
COMP2521

Generic ADTs in C

1

Function Pointers

• C can pass functions by passing a pointer to them.

• Function pointers ...

– are references to memory addresses of functions

– are pointer values and can be assigned/passed

• Function pointer variables/parameters are declared as:

typeOfReturnValue (*fp)(typeOfArguments)

• In the following example, fp points to a function that returns
int and have one argument of type int.

int (*fp)(int)

COMP2521 2

Function Pointers
int square(int x) { return x*x;}

int timesTwo(int x) {return x*2;}

int (*fp)(int);

fp = □ //fp points to the square function

int n = (*fp)(10); //call the square function with input 10

fp = timesTwo; //works without the &

//fp points to the timesTwo function

n = (*fp)(2); //call the timesTwo function with input 2

n = fp(2); //can also use normal function call

//notation
COMP2521 3

Higher-order Functions

• Functions that get other functions as arguments, or return functions
as a result

• Example: the function traverse takes a list and a function pointer
(fp) as argument and applies the function to all nodes in the list

COMP2521 4

void traverse (list ls, void (*fp) (list)){

list curr = ls;

while(curr != NULL){

// call function for the node

fp(curr);

curr = curr->next;

}

}

Second argument is fp,

Pointer to a function like,
void functionName(list n)

Higher-order Functions: Example

COMP2521 5

void printNode(list n){

if(n != NULL){

printf("%d->",n->data);

}

}

void traverse (list ls, void (*fp) (list));

//The second argument must have matching prototype

traverse(myList, printNode);

traverse(myList, printGrade);

void printGrade(list n){

if(n != NULL){

if(n->data >= 50){

printf(“Pass”);

}

else {

printf(“Fail”);

}

}

}

Generic Types in C

• Polymorphism: refers to the ability of the same code to
perform the same action on different types of data.

• There are two primary types of polymorphism:

– Parametric polymorphism: The code takes the type as a parameter,
either explicitly (as C++ and Java) or implicitly (say as in C)

– Subtype polymorphism: Subtype polymorphism is associated with
inheritance hierarchies.

COMP1927 6
• Lectures slides on the topic “Generic Types in C” are drawn from the material available at

http://web.eecs.utk.edu/~bvz/cs365/notes/generic-types.html, by Brad Vander Zanden

Generic Types in C

• Polymorphism in C:
C provides pointer to void (for example, void *p), the programmer can
create generic data types by declaring values to be of type "void *". For
example:

• The programmer can pass in type-specific functions (e.g., comparator
functions) that take void *'s as parameters and that downcast the void *'s
to the appropriate type before manipulating the data.

• For example, the example on the next page has a generic min function
that computes and returns the minimum of two elements. The sample
program compares two strings.

COMP2521 7

struct Node {

void *value;

struct Node *next;

};

COMP1927: Generic Types in C

COMP1927 8
• Lectures slides on the topic “Generic Types in C” are drawn from the material available at

http://web.eecs.utk.edu/~bvz/cs365/notes/generic-types.html, by Brad Vander Zanden

#include <stdio.h>

#include <string.h>

// generic min function

void *min(void *element1, void *element2, int (*compare)(void *, void *)) {

if (compare(element1, element2) < 0)

return element1;

else

return element2;

}

// stringCompare downcasts its void * arguments to char * and then passes

// them to strcmp for comparison

int stringCompare(void *item1, void *item2) {

return strcmp((char *)item1, (char *)item2);

}

int main(int argc, char *argv[]) {

if (argc != 3) {

printf("usage: min string1 string2\n");

return 1;

}

// call min to compare the two string arguments and downcast the return

// value to a char *

char *minString = (char *)min(argv[1], argv[2], stringCompare);

printf("min = %s\n", minString);

return 0;

}

Generic Types in C

Advantages

• One copy of the code works with multiple objects.

• The approach supports both generic data structures and generic
algorithms.

Disadvantages

• Downcasting can be dangerous, since run-time type checks are not
performed in C.

• The code often has a cluttered appearance.

COMP1927 9
• Lectures slides on the topic “Generic Types in C” are drawn from the material available at

http://web.eecs.utk.edu/~bvz/cs365/notes/generic-types.html, by Brad Vander Zanden

Generic Set ADT

• Live Demo of ...
Generic Set ADT Implementation

COMP2521 10

