Functions and relations: supplementary notes

Functions

1. We will follow the definitions and notations in the lecture slides.

$$
f: A \rightarrow B
$$

is a function from the set A to the set B. A function is a rule assigning a member of $x \in A$ to exactly one y in B. For example, we often write "let $f(x)=x^{2}$ " on natural numbers \mathbb{N}. We are actually giving the rule or recipe for computing the output $x^{2}=x * x$ for any input x. Think how you will write a simple programme for x^{2}.
2. I repeat: a function is a rule that associates to each $x \in A$ exactly one $y \in B$. But several members of A can be associated with the same y.

$$
x_{\searrow y^{\prime}}^{\nearrow^{y}} \text { :not ok } \quad \begin{aligned}
& x \\
& x^{\prime} \nmid y \text { :ok }
\end{aligned}
$$

Another name for function is mapping. If $f(x)=y$ we say x is mapped to y.
3. How many functions? Can we count the number of functions from A to B ? For finite sets A and B the answer is yes. Let us see how to count the number of functions for a simple but important case. Suppose $B=\{0,1\}$ and $\#(A)=n(\#(A)$ denotes the number of elements in $A)$. For any function $f: A \rightarrow B$ it is enough to specify the set of elements A^{\prime} that are mapped to 0 because the rest are mapped to $1 . A^{\prime}$ is exactly the subset $f \leftarrow(0)$ of A (see Week3 lecture slide).
4. Let us now look at functions from different perspective. Let $f: A \rightarrow B$ be a function. Consider the set $G_{f}=\{(x, f(x)) \mid x \in A\}$. Thus G_{f} is the set of pairs whose first member x is from A and the second member is then $f(x)$. Obviously $G_{f} \subset A \times B$. It is called the graph of f and is completely determined by f. We can invert the process and define a function as a subset G of $A \times B$ satisfying the following two conditions.
(a) Let p_{1} be the projection (function) $p_{1}: A \times B \rightarrow A$ such that $p_{1}((x, y))=$ x. Then $p_{1}(G)=A$.
(b) If (x, y) and $\left(x, y^{\prime}\right) \in G$ then $y=y^{\prime}$.
*The first condition says that the set first elements of the pairs in G cover all of A. The second condition is essentially the definition of function. So given G satisfying the two conditions what is the corresponding function, say, g. Answer, $g(x)=p_{2}\left(q^{\leftarrow}(x)\right)$ where $q: G \rightarrow A$ is the restriction of p_{1} to G and p_{2} is the projection on to the second member: $p_{2}((x, y))=y$.
5. Functions can be defined in strange ways. They are perfectly legitimate but you may have serious problem computing them. Here is a classic example.
*Consider the collection of all syntactically correct programs in some language like C. Let

$$
\mathcal{P}=\{P \mid P \text { is a correct program in } \mathrm{C}\}
$$

Here correct means that there are no syntax errors. Let $|P|$ denote the length of the programme P. Define a function

$$
h(P)=\left\{\begin{array}{l}
1 \text { if } P \text { eventually stops } \\
0 \text { if } P \text { does not stop }
\end{array}\right.
$$

This is a properly defined function since a programme either stops or does not. A famous result in computer science says that the function h cannot be computed. This means that it is impossible to write a programme which takes any programme P as input and produces $h(P)$.
6. Example. We will consider boolean functions. Let

$$
X=\{0,1\} \text { and } A=X^{n}=\underbrace{X \times X \times \cdots \times X}_{n \text { times }}
$$

Now define functions

$$
\begin{aligned}
& \text { AND, } 0 \mathrm{OR}: X \times X \rightarrow X \text { by } \\
& \operatorname{NOT}: X \rightarrow X \\
& \operatorname{AND}(0,0)=\operatorname{AND}(0,1)=\operatorname{AND}(1,0)=0, \operatorname{AND}(1,1)=1 \\
& \operatorname{OR}(1,0)=\operatorname{OR}(0,1)=\mathrm{OR}(1,1)=1, \operatorname{OR}(0,0)=0 \\
& \operatorname{NOT}(0)=1, \operatorname{NOT}(1)=0
\end{aligned}
$$

These are some of the basic gates used in digital circuits. The nice thing is any boolean function $f: X^{n} \rightarrow X$ can be implemented by appropriately composing these 3 basic functions. This means that any function that is computable can be computed using a circuit built out of these gates. As a simple example consider the function $f: X^{3} \rightarrow X$ given by

$$
\begin{aligned}
& f(0,0,0)=f(0,0,1)=f(0,1,0)=f(1,0,0)=0 \\
& f(0,1,1)=f(1,0,1)=f(1,1,0)=f(1,1,1)=1
\end{aligned}
$$

Verify that $f(a, b, c)=\operatorname{AND}(\operatorname{OR}(\operatorname{AND}(a, b), c), \operatorname{OR}(a, \operatorname{AND}(b, c)))$. Please observe how the different functions are composed.

Author: Manas Patra

