COMP9444
Neural Networks and Deep Learning

3. Backpropagation

Textbook, Sections 4.3, 5.2, 6.5.2
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Types of Learning

Supervised Learning
agent is presented with examples of inputs and their targputs

Reinforcement Learning
agent is not presented with target outputs, but is given angw
signal, which it aims to maximize

Unsupervised Learning

agent is only presented with the inputs themselves, and @ms
find structure in these inputs
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Outline

Supervised Learning
Ockham’s Razor (5.2)
Multi-Layer Networks

Gradient Descent (4.3, 6.5.2)
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Supervised Learning

we have draining setand atest seteach consisting of a set of items;
for each item, a number of input attributes and a target vatee
specified.

the aim is to predict the target value, based on the inpubatés.

agent is presented with the input and target output for daahin the
training set; it must then predict the output for each iterthintest set
various learning paradigms are available:

Neural Network

Decision Tree

Support Vector Machine, etc.
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Supervised Learning — Issues

framework (decision tree, neural network, SVM, etc.)

representation (of inputs and outputs)

pre-processing / post-processing

training method (perceptron learning, backpropagatitm) e

generalization (avoid over-fitting)

evaluation (separate training and testing sets)
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Curve Fitting

Which curve gives the “best fit” to these data?

f()
|

straight line?
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Curve Fitting

Which curve gives the “best fit” to these data?
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Curve Fitting
Which curve gives the “best fit” to these data?
f(x)
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parabola?
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Curve Fitting Curve Fitting
Which curve gives the “best fit” to these data? Which curve gives the “best fit” to these data?
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4th order polynomial? Something else?
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Ockham’s Razor Outliers
“The most likely hypothesis is themplestone consistent with the data.” 2 =087
g
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i
5
28 100-
BF
% All Counties m
°© 10- . Palm Beach
inadequate good compromise over-fitting 10 100 1000
Since there can beoisein the measurements, in practice need to make a Predicted Buchanan Votes by County
tradeoff between simplicity of the hypothesis and how widit$ the data. [faculty.washington.edu/mtbrett]
(©Alan Blair, 2017

(©Alan Blair, 2017 COMP9444

COMP9444



COMP9444 17s2 Backpropagation
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Multi-Layer Neural Networks

XOR

NOR

AND NOR -15

Problem: How can we train it to learn a new function? (cresigignment)
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Recall: Limitations of Perceptrons

Backpropagation

Problem: many useful functions are not linearly separahig. XOR)

Il s

@

I, and

I2

Possible solution:

x1 XOR X2 can be written asx§ AND x2) NOR (x; NOR x2)

Iy

Iy

©

Iy xor 1,

Recall that AND, OR and NOR can be implemented by perceptrons
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Two-Layer Neural Network

Output units

Hidden units

Input units

g
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Normally, the numbers of input and output units are fixed,

but we can choose the number of hidden units.
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The XOR Problem

X1 X | target
0O O 0

0 1 1

1 0 1

1 1 0

for this toy problem, there is only a training set; there isvabidation
or test set, so we don’t worry about overfitting

the XOR data cannot be learned with a perceptron, but can be
achieved using a 2-layer network with two hidden units
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NN Training as Cost Minimization

We define arerror function E to be (half) the sum over all input patterns
of the square of the difference between actual output anidediesutput

E= % S (z-1)?

If we think of E as height, it defines an errtandscape on the weight
space. The aim is to find a set of weights for whi€fs very low.
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Neural Network Equations

Uy = by +wWiixg +Wioxe
yi = 9(u)
S = C+H+Viyi1+Vay2
z = d(9
E - 1 2
= §Z(Z_t)

We sometimes use as a shorthand for any of the trainable weights
{€,v1, V2, b1, b2, W11, W1, W12, W22}
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Local Search in Weight Space

A Current
Cost State

function

“flat” Local

Minimum

AN

Shoulder Local Minimum

_—— Global Minimum

>
>

State Space

Problem: because of the step function, the landscape wilbao
smooth but will instead consist almost entirely of flat logagions and
“shoulders”, with occasional discontinuous jumps.
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Key ldea

[
—_— 1
-1
(a) Step function (b) Sign function (c) Sigmoid function

Replace the (discontinuous) step function with a diffeedsié function,
such as the sigmoid:

a(s) :

T 1tes

or hyperbolic tangent
e—e*s 1

= -1
e+es (1+e—25)

g(s) = tanh(s) =
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Chain Rule (6.5.2)

If, say
y=y(u)
u=u(x)
Then
oy _ oy ou
Ox du 9x

This principle can be used to compute the partial derivativean
efficient and localized manner. Note that the transfer fonatnust be
differentiable (usually sigmoid, or tanh).
- 1
Note: if z(s) = Tres
if z(s) =tanhs),

Z(s) =z(1-2).
Z(s)= 1-2.
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Gradient Descent (4.3)

Recall that theerror function E is (half) the sum over all input patterns
of the square of the difference between actual output anidediesutput

1 2
The aim is to find a set of weights for whi¢his very low.

If the functions involved are smooth, we can use multi-Valgacalculus
to adjust the weights in such a way as to take us in the stedpesthill
direction.

W 4— W— oE
L ow
Parameten is called thdearning rate
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Backpropagation
Forward Pass
Uy = by +WiiXg +Wioxe
yi = 9(u)
S = CH+Viy1+Vay2
b 1/ z = 99
1
W. _ = 1\2
1 E = 5 z (z—t)
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Partial Derivatives

E _

0z

dz =

T = d9=21-2
o

oy1 -0

dyp

d_ul = yi(1-y1)

Partial derivatives can be calculated efficiently by paokpgating deltas

through the network.
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Useful notation

oE J0E J0E
5out—£ 61_0_L11 62_6_112
Then

Oout = (z—t)z(1-2)

0E

0_\/1 = Oouty1

0 = OoutViyi(l—wy1)

oE

aTll - 6]_ Xl

Backpropagation
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Example: Pima Indians Diabetes Dataset

Attribute mean  stdv
1.  Number of times pregnant 3.8 3.4
2. Plasma glucose concentration 1209 32.0
3. Diastolic blood pressure (mm Hg) 69.1 194
4. Triceps skin fold thickness (mm) 205 16.0
5.  2-Hour serum insulin (mu U/ml) 79.8 115.2
6. Body mass index (weight in kg/(height in#n)| 32.0 7.9
7. Diabetes pedigree function 0.5 0.3
8. Age (years) 33.2 118
9.

Class variable (0 or 1)
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Two-Layer NN’s — Applications

Medical Dignosis
Autonomous Driving

Game Playing

Credit Card Fraud Detection
Handwriting Recognition

Financial Prediction
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Training Tips

re-scale inputs and outputs to be in the range 0 to-1Ioto 1
replace missing values with mean value for that attribute
initialize weights to very small random values

on-line or batch learning

three different ways to prevent overfitting:
limit the number of hidden nodes or connections
limit the training time, using a validation set

weight decay

adjust learning rate (and momentum) to suit the particalsk t
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Overfitting in Neural Networks Overfitting in Neural Networks

Error versus weight updates (example 1)

0.01 N ' ' ' Error versus weight updates (example 2)
0.009 |. Training seterror ~ + 0.08 e, T T T
0.008 | Validation seterror+ 0.07 f ’g Training seterror ~ +
3 [ Validation set error ~ +
0.007 | . 0.06 -
= + N e
S 0.006 | . 0.05 | T
] (Y 5 e,
0.005 | . S 004 . WWW#M# .
]
0.004 | . 003 I —
0.003 b 0.02 ‘s b
0.002 ' ' ' 0.01 * .
0 5000 10000 15000 20000 0 ) \“““m ' W
Number of weight updates 0 1000 2000 3000 4000 5000 6000
. . . Number of weight updates
Note: x-axis could also be number of hidden nodes or cormmexti gntup
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ALVINN (Pomerleau 1991, 1993) ALVINN
Sharp Straight Sharp
J— ﬁ Left Ahead Right
- il Q O g
D s
30x32 Sensor
Input Retina
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ALVINN

Autonomous Land Vehicle In a Neural Network

later version included a sonar range finder
8 x 32 range finder input retina
29 hidden units
45 output units
Supervised Learning, from human actions (Behavioral Gighi

additional “transformed” training items to cover emergenc
situations

drove autonomously from coast to coast
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Summary

Neural networks are biologically inspired

Multi-layer neural networks can learn non linearly seplgdinctions

Backpropagation is effective and widely used
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