COMP9444
Neural Networks and Deep Learning

5. Convolutional Networks

Textbook, Sections 6.2.2, 6.3, 7.9, 7.11-7.13, 9.1-9.5

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Outline

Geometry of Hidden Unit Activations
Limitations of 2-layer networks
Alternative transfer functions (6.3)
Convolutional Networks (9.1-9.5)

Dropout

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Encoder Networks

Inputs Outputs
10000 10000
01000 01000
00100 00100
00010 00010
00001 00001

identity mapping through a bottleneck
also called N—M-N task

used to investigate hidden unit representations

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

N—2—N Encoder

HU Space:

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

8—3—8 Encoder

Exercise:
Draw the hidden unit space for 2-2-2, 3-2-3, 4-2-4 and 5-2¢oders.

Represent the input-to-hidden weights for each input una point, and
the hidden-to-output weights for each output unit by a line.

Now consider the 8-3-8 encoder with its 3-dimensional hiddait
space. What shape would be formed by the 8 points repregetn
iInput-to-hidden weights for the 8 input units? What shapelldide
formed by the planes representing the hidden-to-outpughteifor each
output unit?

Hint: think of two platonic solids, which are “dual” to eackher.

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Hinton Diagrams

Sharp Straight Sharp
Left Ahead Right
30 Output
Units
30x32 Sensor
Input Retina
used to visualize higher dimensions
white = positive, black = negative

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Learning Face Direction

left strt rght up

L sy
inpuks

Typical input images

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Learning Face Direction

left strt rght up Learned Weights
A I B B E EE

Typical input images

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Symmetries

swap any pair of hidden nodes, overall function will be themsa

on any hidden node, reverse the sign of all incoming and auggo
weights (assuming symmetric transfer function)

hidden nodes with identical input-to-hidden weights inaityewould
never separate; so, they all have to begin with differenta(dm
random weights

In practice, all hidden nodes try to do similar job at firsterih
gradually specialize.

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Controlled Nonlinearity

for small weights, each layer implements an approximatakalr
function, so multiple layers also implement an approxinydiaear
function.

for large weights, transfer function approximates a stewgtion, so
computation becomes digital and learning becomes very. slow

with typical weight values, two-layer neural network impients a
function which is close to linear, but takes advantage ofmatdid
degree of nonlinearity.

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidavarn.

For example, this Twin Spirals problem cannot be learned wi2-layer
network, but it can be learned using a 3-layer network if waude
shortcut connections between non-consecutive layers.

COMP9444 ©Alan Blair, 2017

10

COMP9444 17s2 Convolutional Networks

Adding Hidden Layers

Twin Spirals can be learned by 3-layer network with shortcut
connections

first hidden layer learns linearly separable features

second hidden layer learns “convex” features

output layer combines these to produce “concave” features
training the 3-layer network is delicate

learning rate and initial weight values must be very small

otherwise, the network will converge to a local optimum

COMP9444 ©Alan Blair, 2017

11

COMP9444 17s2 Convolutional Networks

Vanishing / Exploding Gradients

Training by backpropagation in networks with many layerdifScult.

When the weights are small, the differentials become smaiid smaller
as we backpropagate through the layers, and end up havirftect e

When the weights are large, the activations in the highezriayvill
saturate to extreme values. As a result, the gradients s¢ tlagers will
become very small, and will not be propagated to the eadsrs.

When the weights have intermediate values, the differisntail
sometimes get multiplied many times is places where thafieafunction
IS steep, causing them to blow up to large values.

COMP9444 ©Alan Blair, 2017

12

COMP9444 17s2 Convolutional Networks

Solutions to Vanishing Gradients

layerwise unsupervised pre-training
long short term memory (LSTM)

new activations functions

LSTM is specifically for recurrent neural networks.

We will discuss unsupervised pre-training and LSTM latethi course.

COMP9444 ©Alan Blair, 2017

13

COMP9444 17s2

Convolutional Networks

Activation Functions (6.3)

-

Sigmoid

b
OI
1 i

Hyperbolic Tangent

COMP9444

Rectified Linear Unit (ReLU)

Scaled Exponential Linear Unit (SELU)

©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Activation Functions (6.3)

Sigmoid and hyperbolic tangent traditionally used for ela
networks, but suffer from vanishing gradient problem inmhkre
networks.

Rectified Linear Units (ReLUs) are popular for deep netwprks
including convolutional networks. Gradients don’t vanish
But, their highly linear nature may cause other problems.

Scaled Exponential Linear Units (SELUS) are a recent intnona
which seems to work well for very deep networks.

COMP9444 ©Alan Blair, 2017

15

COMP9444 17s2 Convolutional Networks 16

Convolutional Networks

-
Phira
sunset Pt

|[pooococoo00c0g0000
Idoaooo&(é&&l!

convolution + max pooling vec
nonlinearity |

convolution + pooling layers fully connected layers ~ Nx binary classification

Suppose we want to classify an image as a bird, sunset, dpgtca

If we can identify features such as feather, eye, or beakiwpiovide
useful information in one part of the image, then those featare likely
to also be relevant in another part of the image.

We can exploit this regularity by using a convolution laydrieh applies
the same weights to different parts of the image.

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Hubel and Weisel — Visual Cortex

=

4

cells in the visual cortex respond to lines at different asg|

cells in V2 respond to more sophisticated visual features
Convolutional Neural Networks are inspired by this neusdamy
CNN'’s can now be simulated with massive parallelism, usiRiJG

COMP9444 ©Alan Blair, 2017

17

COMP9444 17s2 Convolutional Networks 18

Convolutional Network Components

Input Convolutional =~ Pooling Fully Connected Output
Layer Layer Layer Layer Layer

=g T

convolution layers. extract shift-invariant features from the previous
layer

subsampling or pooling layers. combine the activations of multiple
units from the previous layer into one unit

fully connected layers: collect spatially diffuse information

output layer: choose between classes

COMP9444 ©Alan Blair, 2017

19

Convolutional Networks

COMP9444 17s2

MNIST Handwritten Digit Examples

Q—ONM AN fry >
O~ >GO\ ~0 O
Q>N A~ <
V=N CIFe N o
QN OTWS rkee o
Q~—~xNIPYPWLO N\
C=NOITLW -0
QA MIYIWVSE rwJd
O—C MmN Noe g
O~ TN -0 N
O~ (I N9 N~
Q- ("IN hoa oy
Q~mMm>\- Mo
D — (M J DS -
QO —c M I 09 % &
D—{ TN
O=—=adNTNS X O
QXM IPNO Y N
O~ TP O NG &

©Alan Blair, 2017

COMP9444

COMP9444 17s2 Convolutional Networks

CIFAR Image Examples

airplane automobile

Dg

cak
>
ship

bird
g -
-

COMP9444

deer

e

E”‘.
E

©Alan Blair, 2017

20

COMP9444 17s2 Convolutional Networks 21

Convolutional Network Architecture

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

E“ Ny r T
Il- qabboétlo.sdl
|~ EE - bird (0.02)

There can be multiple steps of convolution followed by poglibefore
reaching the fully connected layers.

Note how pooling reduces the size of the feature map (usumstifpalf in
each direction).

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Softmax (6.2.2)

Consider a classification task wibhclasses, and assumegis the output
of the unit corresponding to clags

We assume the network’s estimate of the probability of eda$sg is
proportional to exfrz;). Because the probabilites must add up to 1, we
need to normalize by dividing by their sum:

. exp(z)
ronl = le\l 1 exp(zj)
log Prol{i) = Iogz L EXp(zZ))

If the correct class ig, we can treat-log Proldi) as our cost function.
The first term pushes up the correct clgsshile the second term mainly
pushes down the incorrect clapwith the highest activation (if # 1).

COMP9444 ©Alan Blair, 2017

22

COMP9444 17s2 Convolutional Networks

Convolution Operator

Continuous convolution

S(t) = (X W) (t) = / x(a)w(t —a)da

Discrete convolution
S(t) = (x=w)(t) = > x(@w(t—a)
Two-dimensional convolution

S(j,K) = (K+1)(j.Kk) = 5 5 K(mn)l(j+mk-+n)

Note: Theoreticians sometimes wrltg — m, k— n) so that the operator is
commutative. But, computationally, it is easier to writgvith a plus sign.

COMP9444 ©Alan Blair, 2017

23

COMP9444 17s2 Convolutional Networks

Convolutional Neural Networks

; "
K

Assume the original image x K, with L channels.
We apply arM x N “filter” to these inputs to compute one hidden unit in
the convolution layer. In this example=6,K =7,L=3,M = 3,N = 3.

COMP9444 ©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Convolutional Neural Networks

j >

j+m-

4 4 _KI
k k+n

Ji,k_ b'+ZZ?rAH}Z KImn +m,k+n)

The same weights are applied to the nkkix N block of inputs, to
compute the next hidden unit in the convolution layer (“virtigharing”).

COMP9444 ©Alan Blair, 2017

25

COMP9444 17s2 Convolutional Networks

Convolutional Neural Networks

If the original image size ig x K and the filter is sizévl x N, the
convolution layer will bgJ+1—M) x (K+1—N)

COMP9444 ©Alan Blair, 2017

26

COMP9444 17s2 Convolutional Networks

Convolution with Zero Padding

Sometimes, we treat the off-edge inputs as zero (or some vdhee).

COMP9444 ©Alan Blair, 2017

27

COMP9444 17s2 Convolutional Networks

Convolution with Zero Padding

This is known as “Zero-Padding”.

COMP9444

©Alan Blair, 2017

28

COMP9444 17s2 Convolutional Networks

Convolution with Zero Padding

With Zero Padding, the convolution layer is the same sizéda®tiginal
image (or the previous layer).

COMP9444 ©Alan Blair, 2017

29

COMP9444 17s2 Convolutional Networks

Pooling Layers

Input Convolutional ~ Pooling Fully Connected Output
Layer Layer Layer Layer Layer

= T

Pooling layers compute either the average, median or, noranonly,
the maximum of the values in a neighborhood.

If the convolution layer detects a particular feature, th®® pooling
layer will indicate whether that feature is present in algliglarger
neigborhood.

COMP9444 ©Alan Blair, 2017

30

COMP9444 17s2

Max Pooling

Single depth slice

Convolutional Networks

<=

1(1(2]| 4
max pool with 2x2 filters
5 |6 | 7 | 8 | andstride2
3 | 2 |[ESEE
1(2 |3 | 4

COMP9444

©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks

Example: LeNet trained on MNIST

C3: 1. maps 16&@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

6@28x28
32x32 52: . maps CS:layer pg. jayer OQUTPUT
84 10

S |T_ r'_r
i

| | Full mnAamian | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

The 5x 5 window of the first convolution layer extracts from the angj

32x 32 image a 2& 28 array of features. Subsampling then halves this
size to 14x 14. The second Convolution layer uses anotheB5rvindow

to extract a 1< 10 array of features, which the second subsampling layer
reduces to & 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the digit$d '9’.

COMP9444 ©Alan Blair, 2017

32

COMP9444 17s2 Convolutional Networks

Convolutional Filters

First Layer Second Layer

COMP9444

Third Layer

©Alan Blair, 2017

33

34

Convolutional Networks

COMP9444 17s2

Dropout (7.12)

R
¢

(b) After applying dropout.

(a) Standard Neural Net

Nodes are randomly chosen to not be used, with some fixed Ipfitypa

(usually, one half).

(©Alan Blair, 2017

COMP9444

COMP9444 17s2 Convolutional Networks

Dropout (7.12)

When training is finished and the network is deployed, allesoare used,
but their activations are multiplied by the same probaptiiat was used
In the dropout.

Thus, the activation received by each unit is the averagesvail what it
would have received during training.

Dropout forces the network to achiexedundancypecause it must deal
with situations where some features are missing.

Another way to view dropout is that it implicitly (and efficity) simulates
anensembl®f different architectures.

COMP9444 ©Alan Blair, 2017

35

COMP9444 17s2 Convolutional Networks

Ensembling

Ensembling is a method where a number of different classiéiex trained
on the same task, and the final class is decided by “voting raniioem.

In order to benefit from ensembling, we need to hdwersity in the
different classifiers.

For example, we could train three neural networks with dgffe
architectures, three Support Vector Machines with difiedimensions
and kernels, as well as two other classifiers, and ensenilmétakem to
produce a final result.

(Kaggle Competition entries are often done in this way).

COMP9444 ©Alan Blair, 2017

36

COMP9444 17s2 Convolutional Networks

Bagging

Diversity can also be achieved by training on different ebsf data.
Suppose we are givew training items.

Each time we train a new classifier, we chobdsgems from the training
setwith replacement This means that some items will not be chosen,
while others are chosen two or three times.

There will be diversity among the resulting classifiers loseathey have
each been trained on a different subset of data. They canseendhed to
produce a more accurate result than a single classifier.

COMP9444 ©Alan Blair, 2017

37

COMP9444 17s2 Convolutional Networks

Dropout as an Implicit Ensemble

In the case of dropout, the same data are used each time tera ki
architecture is created by removing the nodes that are dobpp

The trick of multiplying the output of each node by the probgbof
dropout implicitly averages the output over all of theséeddnt models.

COMP9444 ©Alan Blair, 2017

38

