
COMP9444
Neural Networks and Deep Learning

5. Convolutional Networks

Textbook, Sections 6.2.2, 6.3, 7.9, 7.11-7.13, 9.1-9.5

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 1

Outline

� Geometry of Hidden Unit Activations

� Limitations of 2-layer networks

� Alternative transfer functions (6.3)

� Convolutional Networks (9.1-9.5)

� Dropout

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 2

Encoder Networks

Inputs Outputs

10000 10000

01000 01000

00100 00100

00010 00010

00001 00001

� identity mapping through a bottleneck

� also called N–M–N task

� used to investigate hidden unit representations

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 3

N–2–N Encoder

HU Space:

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 4

8–3–8 Encoder

Exercise:

Draw the hidden unit space for 2-2-2, 3-2-3, 4-2-4 and 5-2-5 encoders.

Represent the input-to-hidden weights for each input unit by a point, and

the hidden-to-output weights for each output unit by a line.

Now consider the 8-3-8 encoder with its 3-dimensional hidden unit

space. What shape would be formed by the 8 points representing the

input-to-hidden weights for the 8 input units? What shape would be

formed by the planes representing the hidden-to-output weights for each

output unit?

Hint: think of two platonic solids, which are “dual” to each other.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 5

Hinton Diagrams

� used to visualize higher dimensions

� white = positive, black = negative

Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 6

Learning Face Direction

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 7

Learning Face Direction

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 8

Symmetries

� swap any pair of hidden nodes, overall function will be the same

� on any hidden node, reverse the sign of all incoming and outgoing

weights (assuming symmetric transfer function)

� hidden nodes with identical input-to-hidden weights in theory would

never separate; so, they all have to begin with different (small)

random weights

� in practice, all hidden nodes try to do similar job at first, then

gradually specialize.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 9

Controlled Nonlinearity

� for small weights, each layer implements an approximately linear

function, so multiple layers also implement an approximately linear

function.

� for large weights, transfer function approximates a step function, so

computation becomes digital and learning becomes very slow.

� with typical weight values, two-layer neural network implements a

function which is close to linear, but takes advantage of a limited

degree of nonlinearity.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 10

Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

For example, this Twin Spirals problem cannot be learned with a 2-layer

network, but it can be learned using a 3-layer network if we include

shortcut connections between non-consecutive layers.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 11

Adding Hidden Layers

� Twin Spirals can be learned by 3-layer network with shortcut

connections

� first hidden layer learns linearly separable features

� second hidden layer learns “convex” features

� output layer combines these to produce “concave” features

� training the 3-layer network is delicate

� learning rate and initial weight values must be very small

� otherwise, the network will converge to a local optimum

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 12

Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers isdifficult.

When the weights are small, the differentials become smaller and smaller

as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will

saturate to extreme values. As a result, the gradients at those layers will

become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will

sometimes get multiplied many times is places where the transfer function

is steep, causing them to blow up to large values.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 13

Solutions to Vanishing Gradients

� layerwise unsupervised pre-training

� long short term memory (LSTM)

� new activations functions

LSTM is specifically for recurrent neural networks.

We will discuss unsupervised pre-training and LSTM later inthe course.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 14

Activation Functions (6.3)

-4 -2 0 2 4
-2

-1

0

1

2

3

4

-4 -2 0 2 4
-2

-1

0

1

2

3

4

Sigmoid Rectified Linear Unit (ReLU)

-4 -2 0 2 4
-2

-1

0

1

2

3

4

-4 -2 0 2 4
-2

-1

0

1

2

3

4

Hyperbolic Tangent Scaled Exponential Linear Unit (SELU)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 15

Activation Functions (6.3)

� Sigmoid and hyperbolic tangent traditionally used for 2-layer

networks, but suffer from vanishing gradient problem in deeper

networks.

� Rectified Linear Units (ReLUs) are popular for deep networks,

including convolutional networks. Gradients don’t vanish.

But, their highly linear nature may cause other problems.

� Scaled Exponential Linear Units (SELUs) are a recent innovation

which seems to work well for very deep networks.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 16

Convolutional Networks

Suppose we want to classify an image as a bird, sunset, dog, cat, etc.

If we can identify features such as feather, eye, or beak which provide
useful information in one part of the image, then those features are likely
to also be relevant in another part of the image.

We can exploit this regularity by using a convolution layer which applies
the same weights to different parts of the image.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 17

Hubel and Weisel – Visual Cortex

� cells in the visual cortex respond to lines at different angles

� cells in V2 respond to more sophisticated visual features

� Convolutional Neural Networks are inspired by this neuroanatomy

� CNN’s can now be simulated with massive parallelism, using GPU’s

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 18

Convolutional Network Components

� convolution layers: extract shift-invariant features from the previous

layer

� subsampling or pooling layers: combine the activations of multiple

units from the previous layer into one unit

� fully connected layers: collect spatially diffuse information

� output layer: choose between classes

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 19

MNIST Handwritten Digit Examples

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 20

CIFAR Image Examples

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 21

Convolutional Network Architecture

There can be multiple steps of convolution followed by pooling, before

reaching the fully connected layers.

Note how pooling reduces the size of the feature map (usually, by half in

each direction).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 22

Softmax (6.2.2)

Consider a classification task withN classes, and assumez j is the output
of the unit corresponding to classj.

We assume the network’s estimate of the probability of each class j is
proportional to exp(z j). Because the probabilites must add up to 1, we
need to normalize by dividing by their sum:

Prob(i) =
exp(zi)

∑N
j=1 exp(z j)

logProb(i) = zi − log∑N
j=1 exp(z j)

If the correct class isi, we can treat− logProb(i) as our cost function.
The first term pushes up the correct classi, while the second term mainly
pushes down the incorrect classj with the highest activation (ifj 6= i).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 23

Convolution Operator

Continuous convolution

s(t) = (x∗w)(t) =
∫

x(a)w(t −a)da

Discrete convolution

s(t) = (x∗w)(t) =
∞

∑
a=−∞

x(a)w(t −a)

Two-dimensional convolution

S(j,k) = (K ∗ I)(j,k) = ∑
m

∑
n

K(m,n)I(j+m,k+n)

Note: Theoreticians sometimes writeI(j−m,k−n) so that the operator is
commutative. But, computationally, it is easier to write itwith a plus sign.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 24

Convolutional Neural Networks

lk

j

Assume the original image isJ×K, with L channels.

We apply anM×N “filter” to these inputs to compute one hidden unit in

the convolution layer. In this exampleJ = 6,K = 7,L = 3,M = 3,N = 3.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 25

Convolutional Neural Networks

j+m

l

j

k k+n

Z i
j,k = g

(

bi +∑
l

∑M−1
m=0 ∑N−1

n=0 K i
l,m,nV l

j+m,k+n

)

The same weights are applied to the nextM ×N block of inputs, to
compute the next hidden unit in the convolution layer (“weight sharing”).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 26

Convolutional Neural Networks

If the original image size isJ ×K and the filter is sizeM ×N, the

convolution layer will be(J+1−M)× (K +1−N)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 27

Convolution with Zero Padding

Sometimes, we treat the off-edge inputs as zero (or some other value).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 28

Convolution with Zero Padding

This is known as “Zero-Padding”.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 29

Convolution with Zero Padding

With Zero Padding, the convolution layer is the same size as the original

image (or the previous layer).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 30

Pooling Layers

Pooling layers compute either the average, median or, more commonly,

the maximum of the values in a neighborhood.

If the convolution layer detects a particular feature, thenthe pooling

layer will indicate whether that feature is present in a slightly larger

neigborhood.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 31

Max Pooling

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 32

Example: LeNet trained on MNIST

The 5×5 window of the first convolution layer extracts from the original

32×32 image a 28×28 array of features. Subsampling then halves this

size to 14×14. The second Convolution layer uses another 5×5 window

to extract a 10×10 array of features, which the second subsampling layer

reduces to 5×5. These activations then pass through two fully connected

layers into the 10 output units corresponding to the digits ’0’ to ’9’.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 33

Convolutional Filters

First Layer Second Layer Third Layer

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 34

Dropout (7.12)

Nodes are randomly chosen to not be used, with some fixed probability
(usually, one half).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 35

Dropout (7.12)

When training is finished and the network is deployed, all nodes are used,

but their activations are multiplied by the same probability that was used

in the dropout.

Thus, the activation received by each unit is the average value of what it

would have received during training.

Dropout forces the network to achieveredundancybecause it must deal

with situations where some features are missing.

Another way to view dropout is that it implicitly (and efficiently) simulates

anensembleof different architectures.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 36

Ensembling

Ensembling is a method where a number of different classifiers are trained

on the same task, and the final class is decided by “voting” among them.

In order to benefit from ensembling, we need to havediversity in the

different classifiers.

For example, we could train three neural networks with different

architectures, three Support Vector Machines with different dimensions

and kernels, as well as two other classifiers, and ensemble all of them to

produce a final result.

(Kaggle Competition entries are often done in this way).

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 37

Bagging

Diversity can also be achieved by training on different subsets of data.

Suppose we are givenN training items.

Each time we train a new classifier, we chooseN items from the training

setwith replacement. This means that some items will not be chosen,

while others are chosen two or three times.

There will be diversity among the resulting classifiers because they have

each been trained on a different subset of data. They can be ensembled to

produce a more accurate result than a single classifier.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Convolutional Networks 38

Dropout as an Implicit Ensemble

In the case of dropout, the same data are used each time but a different

architecture is created by removing the nodes that are dropped.

The trick of multiplying the output of each node by the probability of

dropout implicitly averages the output over all of these different models.

COMP9444 c©Alan Blair, 2017

