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Neural Networks and Deep Learning

6. Recurrent Networks Processing Temporal Sequences
Sliding Window
Recurrent Network Architectures
Hidden Unit Dynamics

Textbook, Chapter 10
Long Short Term Memory
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Processing Temporal Sequences Sliding Window
There are many tasks which require a sequence of inputs tmbegsed ’yj;—;’!—p[ﬂ)D
rather than a single input. 1 ? loudspeaker
speech recognition neveal

network

time series prediction

machine translation

H

The simplest way to feed temporal input to a neural netwotkas
“sliding window” approach, first used in the NetTalk system
(Sejnowski & Rosenberg, 1987).

44— Exzample 1 xt to NETtalk

handwriting recognition

How can neural network models be adapted for these tasks?
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NetTalk Task NetTalk Architecture

Given a sequence of 7 characters, predict the phonetic petation of /k/

26 output unit
the middle character. outputnits 00000000
For this task, we need to know the characters on both sides. 20 hidden units / T \
For example, how are the vowels in these words pronounced? 000000000000000000000000

SN NN

0000 0000 0000 0000 CO0O00 0000 0000

- i - c V] u 1
mo mod mode modern 203 input units (7 groups of 29)
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NetTalk Simple Recurrent Network (ElIman, 1990)

NETtalk gained a lot of media attention at the time.

Hooking it up to a speech synthesizer was very cute. In thig ear
stages of training, it sounded like a babbling baby. Whely frained,
it pronounced the words mostly correctly (but sounded samagw
robotic).

Later studies on similar tasks have often found that a datisee

at each time step, hidden layer activations are copied totést’ layer
could produce equally good or better accuracy.

hidden layer receives connections from input and contexria
This kind of approach can only learn short term dependenc@she the inputs are fed one at a time to the network, it uses thexblayer
medium or long term dependencies that are required for sashks.t to “remember” whatever information is required for it to guwe the
correct output
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Back Propagation Through Time
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we can “unroll” a recurrent architecture into an equivafeetiforward
architecture, with shared weights

applying backpropagation to the unrolled architectureffered to as
“backpropagation through time”

we can backpropagate just one timestep, or a fixed number of
timesteps, or all the way back to beginning of the sequence
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Second Order (or Gated) Networks
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Other Recurrent Network Architectures

it is sometimes beneficial to add “shortcut” connectionsatiy from
input to output

connections from output back to hidden have also been exgblor
(sometimes called “Jordan Networks”)
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Task: Formal Language Recognition

Accept Reject

1 0

11 10

111 01

1111 00

11111 011
111111 110
1111111 (11111110
11111111}10111111

Scan a sequence of characters one at a time,
then classify the sequence as Accept or Reject.
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Dynamical Recognizers

W = [—0.89 —0.09 —0.14]

\ e 0 —1.13 —0.09 —0.14

\ . 0.20 0.68 0.96
N W = [ 020 0.81 1.19]
D \ P = [-007 066 0.75]
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gated network trained by BPTT
emulates exactly the behaviour of Finite State Automaton
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Dynamical Recognizers

trained network emulates the behaviour of Finite State Auation
training set must include short, medium and long examples
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Task: Formal Language Recognition

Accept Reject

1 000

0 11000

10 0001

01 000000000

00 11111000011
100100 1101010000010111

001111110100 1010010001

0100100100 0000
11100 00000
0010

Scan a sequence of characters one at a time,
then classify the sequence as Accept or Reject.
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Phase Transition
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4 0 1 1 0 1
Wo = [ 067 LT61 0815 Wo o | 0567 1763 0.816
O 7 ] —0.219 —2.591  0.446 O 1 —0.219 —2.593  0.446
We — 0.752  0.548 —1.071 W — 0.751  0.549 —1.073
te 0.074 —0.813  1.502 v 0.075 —0.813  1.502
P o= [ 0069 0172 —0.985] P o= [ 0069 0173 —0.985]
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Chomsky Hierarchy Task: Formal Language Prediction
Language Machine Example abaabbabaaabbbaaaabbbbabaabbaaaaabbbhbb. . .
Regular Finite State Automaton a" (nodd)
Context Free Push Down Automaton ab" Scan a sequence of characters one at a time, and try at epc¢b predict
. . the next character in the sequence.
Context Sensitive Linear Bounded Automaton a"b"c" g
Recursively Enumerable Turing Machine true QBF In some cases, the prediction is probabilistic.
For theab" task, the firsb is not predictable, but subsequérg and the
initial ain the next subsequence are predictable.
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Oscillating Solution for a"b" Learning to Predict a"b"
1 T T T T
) the network does not implement a Finite State Automatonrisiead
s " a region ] uses two fixed points in activation space — one attractirgpther
< repelling (Wiles & Elman, 1995)
= 06
% b region networks trained only up ta'%*° could generalize up ta'?b!?
<
N 04 - training the weights by evolution is more stable than by pacgagation
T
- networks trained by evolution were sometimes monotonierathan
' oscillating
0 1 P 1 : I
0 02 04 0.6 0.8 1

HU1 Activation
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Monotonic Solution for ab"

0.8
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b region

aregion T

1 1 4

02 04 06
HU1 Activation

Recurrent Networks

Counting by Spiralling

SCN state trajectory aaaaaaabbbbaabbbbb.

08 1
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for this task, sequence is accepted if the numbe‘séndb’s are equal
network counts up by spiralling inwards, down by spirallmgwards
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Hidden Unit Analysis for a"b"

SCN state trajectory aaaaaaal bbbbaabbbbd SCN fixed points and eigenvectors

-0.58,0.06

hidden unit trajectory fixed points and eigenvectors
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Hidden Unit Dynamics for a"b"c"

76

- T 1
-1 0 -1
H2 H1

SRN with 3 hidden units can learn to pred#b"c" by counting up and
down simultaneously in different directions, thus proaigca star shape.
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Partly Monotonic Solution for a"b"c" Long Range Dependencies
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Simple Recurrent Networks (SRNs) can learn medium-range
K dependencies but have difficulty learning long range depecids

Long Short Term Memory (LSTM) and Gated Recurrent Units (3RU
can learn long range dependencies better than SRN

(©Alan Blair, 2017

COMP9444 (©Alan Blair, 2017 COMP9444
COMP9444 17s2 Recurrent Networks 26 COMP9444 17s2 Recurrent Networks 27
Long Short Term Memory Reber Grammar

Two excellent Web resources for LSTM:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

christianherta.de/lehre/dataScience/machinelearning/neuralNetworks/LSTM. php
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Embedded Reber Grammar Simple Recurrent Network
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SRN — context layer is combined directly with the input togwoe the

next hidden layer.

SRN can learn Reber Grammar, but not Embedded Reber Grammar.
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Long Short Term Memory Long Short Term Memory
T\ T\ T Gates:
X B > ft = O'(fot + Ufht_l + bf)
A ® 3 A it = 0 (Wixs + Ushi—1 + by)
o] [o] g¢ = tanh (Wyx; + Ugh;_1 + by)
g ¥, > L o: = 0 (Wox: + Uoht—1 + by)

State:
ct=ct-10f +1: O gt

Output:
ht = tanh c: ® 0oy

LSTM — context layer is modulated by three gating mechanisms
forget gate, input gate and output gate.

hey hez hes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Gated Recurrent Unit

hes

Xt

Gates:
Zi = G(Wth +U,h;—1 + bz)
r: = a(Wrxt + Urht—l + br)

gandidate Activation:
h; =
tanh (Wxt + U(rt ® ht_1) + bh)

Output: _
hi=(1-2z)0hi—1+2 Oh;

GRU is similar to LSTM but has only two gates instead of three.
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Google Neural Machine Translation
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