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Word Meaning — Synonyms and Taxonomy?

What is the meaning of meaning?

dictionary definitions
synonyms and antonyms

taxonomy

penguin is-a bird is-a mammal is-a vertebrate
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Outline

statistical language processing
n-gram models

co-occurence matrix

word representations
word2vec

word relationships

neural machine translation

combining images and language
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Statistical Language Processing

Synonyms for “elegant”

stylish, graceful, tasteful, discerning, refined, sopbéged,
dignified, cultivated, distinguished, classic, smarthfasable,
modish, decorous, beautiful, artistic, aesthetic, loveharming,
polished, suave, urbane, cultured, dashing, debonaiyiloxs,
sumptuous, opulent, grand, plush, high-class, exquisite

Synonyms, antonyms and taxonomy require human effort, neay b
incomplete and require discrete choices. Nuances are\ldgsitds like

“king”, “queen” can be similar in some attributes but oppesn others.

Could we instead extract some statistical properties aatioaily, without
human involvement?
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There was a Crooked Man

There was a crooked man,
who walked a crooked mile
And found a crooked sixpence

upon a crooked stile.

He bought a crooked cat,
who caught a crooked mouse
And they all lived together

in a little crooked house.
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Document Classification

word

doc 1

doc 2

doc X
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Counting Frequencies

word frequency
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some words occur frequently in all (or most)
documents

some words occur frequently in a particular
document, but not generally

this information can be useful for document
classification
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Document Classification

each column of the matrix becomes a vector representing the
corresponding document

words like “cat

or rhymes

mouse”, “house” tend to occur in childremooks

other groups of words may be characteristic of legal docuspen
political news, sporting results, etc.

words occurring many times in one document may skew the wecto
might be better to just have a “1” or “0” indicating whetheetivord

occurs at all
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Counting Consecutive Word Pairs Predictive 1-Gram Word Model
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N-Gram Model 1-Gram Text Generator

by normalizing each row (to sum to 1) we can estimate the fitiha

prob(w;|w;) of word w; occurring aftem “Rashly — Good night is very liberal — it is easily said these-igyved to a
sore distraction in wrath and with my king may choose but rafrehapes
and editing by this , and shows a sea And what this is michingecho

; And gins to me a pass , Transports his wit , Hamlet , my armsaga
the mind impatient , by the conditions that would fain knowhieh , the
wicked deed to get from a deed to your tutor .”

need to aggregrate over a large corpus, so that unusual Vikeds
“crooked” will not dominate

the model captures some common combinations like “theré,was
“man who”, “and found”, “he bought”, “who caught”, “and thgy
“they all”, “lived together”, etc.

this unigrammodel can be generalized to a bi-gram, tri-gram,
...,n-gram model by considering threpreceding words

if the vocabulary is large, we need some tricks to avoid egptal
use of memory

COMP9444 (©Alan Blair, 2017 COMP9444 (©Alan Blair, 2017



COMP9444 17s2 Langage Processing 12 COMP9444 17s2 Langage Processing

Co-occurrence Matrix Co-occurrence Matrix (2-word window)
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Co-occurrence Matrix (10-word window) Co-occurrence Matrix
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Word Embeddings

“Words that are used an occur in the same contexts tend to

purport similar meanings.” )
Z. Harris (1954)

“You shall know a word by the company it keeps.”

J.R. Firth (1957)

Aim of Word Embeddings:

Find a vector representation of each word, such that wortls wi
nearby representations are likely to occur in similar cxtste
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Word Embeddings
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History of Word Embeddings

Structuralist Linguistics (Firth, 1957)

Recurrent Networks (Rumelhart, Hinton & Williams, 1986)
Latent Semantic Analysis (Deerwester et al., 1990)

Hyperspace Analogue to Language (Lund, Burgess & Atchl@95]1
Neural Probabilistic Language Models (Bengio, 2000)

NLP (almost) from Scratch (Collobert et al., 2008)

word2vec (Mikolov et al., 2013)

GloVe (Pennington, Socher & Manning, 2014)
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Singular Value Decomposition

Co-occurrence matrix X can be decomposed as ¥SV' where U, V
are unitary (all columns have unit length) and S is diagonal.
M r

- r M
p—yp—
- —U,— Slg ‘ ‘
L Clu V,V, r
s| |||
X U S v’

Columns 1 ton of row k of U then provide am-dimensional vector
representing thk™ word in the vocabulary.

SVD is computationally expensive, proportional toIM? if L > M.
Can we do something similar with less computation, and mergally?
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word2vec 1-Word Context Model

Input layer Hidden layer Output layer
X7 6 6 Y
X210 O| Y2
X3 |O h O Y3

) 1
o> My <]
Xk O i O y]
W= {we} h W'y ~{w 'ij}
N
Xy |0 O|Yy

Thek™ row vy of W is a representation of woid
Thejth columnv’j of W’ is an (alternative) representation of wajrd

If the (1-hot) input isk, the linear sum at each output will log = val

i Vk
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word2vec Issues

word2vec is a linear model in the sense that there is no dictiva
function at the hidden nodes

this 1-word prediction model can be extended to multi-word
prediction in two different ways:

Continuous Bag of Words

Skip-Gram

need a computationally efficient alternative to Softmax ¢&jh
Hierarchical Softmax
Negative Sampling

need to sample frequent words less often
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Cost Function

Softmax can be used to turn these linear swmsto a probability
distribution estimating the probability of wordoccurring in the context
of word k

exp(u;)

Sy-rexpup) 3 exp(vi,Tvi)

exp(V; W)

prob(j|k) =

We can treat the text is a sequence of numbarsvo, ..., wr where
w; = j means that thé" word in the text is thg™ word in the vocabulary.

We then seek to maximize the log probability

1 T
T Zl > logprob(wr|w)
t=1-c<r<c,r#0

wherec is the size of training context (which may dependmah
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word2vec Weight Updates

If we assume the full hierarchical softmax, and the corretpuot is j*,
then the cost function is

\%
E = —uj- +log Z exp(u;)
i=1

the output differentials are

oE 0 v
e = au, = —djj + au Ionglexp(uj/)
where .
1L it j=j
! 0, otherwise.
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word2vec Weight Updates

hidden-to-output differentials

OE _oEou
owj;  oujow,

hidden unit differentials

ah. Z ou; ohy Z & W)
input-to-hidden differentials

0E OE o Y
dwe o a2,
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word2vec Skip-Gram Model

Output layer

Yij
i try to predict the context words,

Input layer given the center word

this skip-gram model is similar to
CBOW, except that in this case a
single input word is used to predict
multiple context words

all context words share the same
hidden-to-output weights

CxV-dim
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Continuous Bag Of Words

O\ Input layer
9
& O If several context words are each
& used independently to predict the
g center word, the hidden activation
. : becomes a sum (or average) over all
. the context words
= Note the difference between
g this and NetTalk — in word2vec
N (CBOW) all context words share
ek O the same input-to-hidden weights
o)/ CxV-dim
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Hierarchical Softmax

target words are organized in a Huffman-coded Binary Tree
each output of the network corresponds to one branch potheitree

only those nodes that are visited along the path to the target are
evaluated (which is logV) nodes on average)
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Hierarchical Softmax

n(w,1)

w; wy w3 Wy Wyg Wy

+1, if ' is left child of noden,

[n" = child(n)] = { )
o(u) = 1/(1—exp(—u))

L(w)—1

prob(w = w) = I_L a([n(w, j +1) = child(n(w, ))]Vpu;)" h)
L
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Negative Sampling

The number of samples is 5-20 for small datasets, 2-5 foelarg
datasets.

Empirically, a good choice of the distribution from whichdaw the
negative samples B(w) = U (w)%*/Z whereU (w) is the unigram
distribution determined by the previous word, ahis a normalizing
constant.
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Negative Sampling

The idea of negative sampling is that we train the networlntogase

its estimation of the target worg and reduce its estimate not of all the
words in the vocabulary but just a subset of thétheg, drawn from an
appropriate distribution.

E= —Iogo(v’j*Th) - Iogo(—v/jTh)
J€ Wheg

This is a simplified version of Noise Constrastive EstinraiNCE).
It is not guaranteed to produce a well-defined probabiliggriiution,
but in practice it does produce high-quality word embedsling
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Subsampling of Frequent Words

In order to diminish the influence of more frequent wordsheaord in
the corpus is discarded with probability

wheref (w;) is the frequency of worel; andt ~ 10~° is an empirically
determined threshold.
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Linguistic Regularities

King + Woman - Man~ Queen

More generally,

AistoBas Cisto ??

d
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= argmax

(Vo + Vb — Va) TV
||Ve + Vb — Val|

Word Analogies

Langage Processing
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Type of relationship ‘Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks
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Capital Cities

Country and Capital Vectors Projected by PCA

33
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Word Relationships
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Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy

zinc: Zn gold: Au
Sarkozy: Nicolas Putin: Medvedev
Google: Android IBM: Linux
Google: Yahoo IBM: McNealy
Germany: bratwurst France: tapas

Dallas: Texas
Mozart: violinist
Merkel: Germany

Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza
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Multi-Modal Skip-Gram Neural Translation

The skip-gram model can be augmented using visual feattossifnages /= (La, croissance, économique, sest, ralentie, ces, demiéres, années, .
labeled with words from the corpus. We first extract mearvatitinsu;

a==ell
933
O
-orrm
O 2
- §
e
Sesas ol
WD

for each word from the highest (fully connected) layers ofNINOmodel (c?
like AlexNet. The objective function then becomes e
(©]
17 B
=7 Zl Eiing + Eimage), Where Ejng = Z log prol(w r|w)
—c<r<c,r#0 =
O O O
! f b
if wy does not occur in ImageNet i E E E E E
Bimage= > max0,y— cog Uy, V) +COSUy,Vj)), Otherwise
Jewneg E“; E E E E E E E E E
This encourages things that look similar to have closerasgmtations. i ey s ok B, e )
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Bidirectional Recurrent Encoder Attention Mechanism
(La, croissance, économique, s'est, ralentie, ces, derniéres, anné
] | || | u || |
¢ L ] ] ] |
u ] ] ] ] | ]
] ] | ] ] ] ]
S, F T N PILITIIIITTITITT WITTRIIIOIIN RPN SRRV SRR AR A
\"'-.N‘Aa Attention
T\ weight Z (l =
W

: (Economic, growth, has, slowed, down, in, recent, year e= (Economlc growth has slowed down in, recem years )
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Google Neural Machine Translation

GPU8

8ilayers

GPU3

GPU2

Encoder LSTMs

GPU2 |

GPUL |
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Captioning, with Attention
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