COMP9444

Neural Networks and Deep Learning

8. Language Processing

Word Meaning - Synonyms and Taxonomy?

What is the meaning of meaning?
dictionary definitions

- synonyms and antonyms
- taxonomy
- penguin is-a bird is-a mammal is-a vertebrate

Outline

- statistical language processing
- n-gram models
- co-occurence matrix
- word representations
- word2vec
- word relationships
neural machine translation
\square combining images and language

Statistical Language Processing

Synonyms for "elegant"

stylish, graceful, tasteful, discerning, refined, sophisticated, dignified, cultivated, distinguished, classic, smart, fashionable, modish, decorous, beautiful, artistic, aesthetic, lovely; charming, polished, suave, urbane, cultured, dashing, debonair; luxurious, sumptuous, opulent, grand, plush, high-class, exquisite

Synonyms, antonyms and taxonomy require human effort, may be incomplete and require discrete choices. Nuances are lost. Words like "king", "queen" can be similar in some attributes but opposite in others.

Could we instead extract some statistical properties automatically, without human involvement?

There was a Crooked Man

There was a crooked man, who walked a crooked mile And found a crooked sixpence upon a crooked stile. He bought a crooked cat, who caught a crooked mouse And they all lived together in a little crooked house

\qquad
www.kearley.co.uk/images/uploads/JohnPatiencePJ03.gif COMP9444
© Alan Blair, 2017

Document Classification

word	doc 1	doc 2	doc X
a	.	\vdots	7
all	\vdots	\vdots	1
and	\vdots	\vdots	1
bought	\vdots	\vdots	1
cat	1		
caught	\vdots	\vdots	7
crooked	\vdots	\vdots	1
found	\vdots	\vdots	1
he	1		
house	\vdots	\vdots	1
in			
ittle	\vdots	\vdots	1
lived	\vdots	\vdots	1
man	\vdots	1	
mile	\vdots	\vdots	1
mouse	\vdots	1	
sixpence	\vdots	\vdots	1
stile	\vdots	1	
there	\vdots	\vdots	1
they			
together	\vdots	\vdots	2

- each column of the matrix becomes a vector representing the corresponding document
- words like "cat", "mouse", "house" tend to occur in children's books or rhymes
\square other groups of words may be characteristic of legal documents, political news, sporting results, etc.
words occurring many times in one document may skew the vector might be better to just have a " 1 " or " 0 " indicating whether the word occurs at all

Counting Consecutive Word Pairs

N-Gram Model

by normalizing each row (to sum to 1) we can estimate the probability $\operatorname{prob}\left(w_{j} \mid w_{i}\right)$ of word w_{j} occurring after w_{i}
\square need to aggregrate over a large corpus, so that unusual words like "crooked" will not dominate

- the model captures some common combinations like "there was", "man who", "and found", "he bought", "who caught", "and they", "they all", "lived together", etc.
- this unigram model can be generalized to a bi-gram, tri-gram,
\ldots, n-gram model by considering the n preceding words
- if the vocabulary is large, we need some tricks to avoid exponential use of memory

Predictive 1-Gram Word Model

1-Gram Text Generator

"Rashly - Good night is very liberal - it is easily said there is - gyved to a sore distraction in wrath and with my king may choose but none of shapes and editing by this, and shows a sea And what this is miching malhecho ; And gins to me a pass, Transports his wit, Hamlet , my arms against the mind impatient, by the conditions that would fain know ; which , the wicked deed to get from a deed to your tutor ."

Co-occurrence Matrix

\square sometimes, we don't necessarily predict the next word, but simply a "nearby word" (e.g. a word occurring within an n-word window centered on that word)

- we can build a matrix in which each row represents a word, and each column a nearby word
- each row of this matrix could be considered as a vector representation for the corresponding word, but the number of dimensions is equal to the size of the vocabulary, which could be very large ($\sim 10^{5}$)
- is there a way to reduce the dimensionality while still preserving the relationships between words?

Co-occurrence Matrix (10-word window)

Co-occurrence Matrix (2-word window)

© Alan Blair, 201

Co-occurrence Matrix

- by aggregating over many documents, pairs (or groups) of words emerge which tend to occur near each other (but not necessarily consecutively)
- "cat", "caught", "mouse"
- "walked", "mile"
- "little", "house"
\square common words tend to dominate the matrix
- could we sample common words less often, in order to reveal the relationships of less common words?

Word Embeddings

"Words that are used an occur in the same contexts tend to purport similar meanings."
Z. Harris (1954)
"You shall know a word by the company it keeps."
J.R. Firth (1957)

Aim of Word Embeddings:
Find a vector representation of each word, such that words with nearby representations are likely to occur in similar contexts.

Word Embeddings

History of Word Embeddings

- Structuralist Linguistics (Firth, 1957)

Recurrent Networks (Rumelhart, Hinton \& Williams, 1986)
Latent Semantic Analysis (Deerwester et al., 1990)

- Hyperspace Analogue to Language (Lund, Burgess \& Atchley, 1995)
- Neural Probabilistic Language Models (Bengio, 2000)

NLP (almost) from Scratch (Collobert et al., 2008)
word2vec (Mikolov et al., 2013)
GloVe (Pennington, Socher \& Manning, 2014)

Singular Value Decomposition

Co-occurrence matrix X can be decomposed as $\mathrm{X}=\mathrm{USV}^{\mathrm{T}}$ where U, V are unitary (all columns have unit length) and S is diagonal.

Columns 1 to n of row k of U then provide an n-dimensional vector representing the $k^{\text {th }}$ word in the vocabulary.
SVD is computationally expensive, proportional to $\mathrm{L} \times \mathrm{M}^{2}$ if $L \geq M$. Can we do something similar with less computation, and incrementally?

word2vec 1-Word Context Model

The $k^{\text {th }}$ row \mathbf{v}_{k} of \mathbf{W} is a representation of word k.
The $j^{\text {th }}$ column \mathbf{v}_{j}^{\prime} of \mathbf{W}^{\prime} is an (alternative) representation of word j.
If the (1-hot) input is k, the linear sum at each output will be $u_{j}=\mathbf{v}_{j}^{\prime \mathrm{T}} \mathbf{v}_{k}$ COMP9444
©AAlan Blair, 2017

word2vec Issues

\square word2vec is a linear model in the sense that there is no activation function at the hidden nodes
\square this 1-word prediction model can be extended to multi-word prediction in two different ways:

- Continuous Bag of Words
- Skip-Gram
\square need a computationally efficient alternative to Softmax (Why?)
- Hierarchical Softmax
- Negative Sampling
- need to sample frequent words less often

Cost Function

Softmax can be used to turn these linear sums u_{j} into a probability distribution estimating the probability of word j occurring in the context of word k

$$
\operatorname{prob}(j \mid k)=\frac{\exp \left(u_{j}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(u_{j^{\prime}}\right)}=\frac{\exp \left(\mathbf{v}_{j}^{\prime} \mathbf{v}_{k}\right)}{\sum_{j^{\prime}=1}^{V} \exp \left(\mathbf{v}_{j^{\prime}}^{\prime} \mathbf{v}_{k}\right)}
$$

We can treat the text is a sequence of numbers $w_{1}, w_{2}, \ldots, w_{T}$ where $w_{i}=j$ means that the $i^{\text {th }}$ word in the text is the $j^{\text {th }}$ word in the vocabulary.

We then seek to maximize the \log probability

$$
\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq r \leq c, r \neq 0} \log \operatorname{prob}\left(w_{t+r} \mid w_{t}\right)
$$

where c is the size of training context (which may depend on w_{t})
СомР9444
© Alan Blair, 201

word2vec Weight Updates

If we assume the full hierarchical softmax, and the correct output is j^{*}, then the cost function is

$$
E=-u_{j^{*}}+\log \sum_{j^{\prime}=1}^{V} \exp \left(u_{j^{\prime}}\right)
$$

the output differentials are

$$
e_{j}=\frac{\partial E}{\partial u_{j}}=-\delta_{j j^{*}}+\frac{\partial}{\partial u_{j}} \log \sum_{j^{\prime}=1}^{V} \exp \left(u_{j^{\prime}}\right)
$$

where

$$
\delta_{j j^{*}}= \begin{cases}1, & \text { if } \quad j=j^{*} \\ 0, & \text { otherwise }\end{cases}
$$

word2vec Weight Updates

hidden-to-output differentials

$$
\frac{\partial E}{\partial w_{i j}^{\prime}}=\frac{\partial E}{\partial u_{j}} \frac{\partial u_{j}}{\partial w_{i j}^{\prime}}=e_{j} h_{i}
$$

hidden unit differentials

$$
\frac{\partial E}{\partial h_{i}}=\sum_{j=1}^{V} \frac{\partial E}{\partial u_{j}} \frac{\partial u_{j}}{\partial h_{i}}=\sum_{j=1}^{V} e_{j} w_{i j}^{\prime}
$$

input-to-hidden differentials

$$
\frac{\partial E}{\partial w_{k i}}=\frac{\partial E}{\partial h_{i}} \frac{\partial h_{i}}{\partial w_{k i}}=\sum_{j=1}^{V} e_{j} w_{i j}^{\prime} x_{k}
$$

Continuous Bag Of Words

© Alan Blair, 2017

Hierarchical Softmax

- target words are organized in a Huffman-coded Binary Tree
- each output of the network corresponds to one branch point in the tree
- only those nodes that are visited along the path to the target word are evaluated (which is $\log _{2}(V)$ nodes on average)

word2vec Skip-Gram Model

try to predict the context words, given the center word

- this skip-gram model is similar to CBOW, except that in this case a single input word is used to predict multiple context words
all context words share the same hidden-to-output weights

Hierarchical Softmax

Negative Sampling

The number of samples is 5-20 for small datasets, 2-5 for large datasets.

- Empirically, a good choice of the distribution from which to draw the negative samples is $P(w)=U(w)^{3 / 4} / Z$ where $U(w)$ is the unigram distribution determined by the previous word, and Z is a normalizing constant.

Negative Sampling

The idea of negative sampling is that we train the network to increase its estimation of the target word j^{*} and reduce its estimate not of all the words in the vocabulary but just a subset of them $\mathcal{W}_{\text {neg }}$, drawn from an appropriate distribution.

$$
E=-\log \sigma\left(\mathbf{v}_{j^{*}}^{\prime} \mathrm{T} \mathbf{h}\right)-\sum_{j \in \mathcal{W}_{\mathrm{neg}}} \log \sigma\left(-\mathbf{v}_{j}^{\prime \mathrm{T}} \mathbf{h}\right)
$$

This is a simplified version of Noise Constrastive Estimation (NCE). It is not guaranteed to produce a well-defined probability distribution, but in practice it does produce high-quality word embeddings.
©Alan Blair, 2017

Subsampling of Frequent Words

In order to diminish the influence of more frequent words, each word in the corpus is discarded with probability

$$
P\left(w_{i}\right)=1-\sqrt{\frac{t}{f\left(w_{i}\right)}}
$$

where $f\left(w_{i}\right)$ is the frequency of word w_{i} and $t \sim 10^{-5}$ is an empirically determined threshold.

Linguistic Regularities

King + Woman - Man \simeq Queen
More generally,
A is to B as C is to ??

$$
d=\operatorname{argmax}_{x} \frac{\left(v_{c}+v_{b}-v_{a}\right)^{\mathrm{T}} v_{x}}{\left\|v_{c}+v_{b}-v_{a}\right\|}
$$

Capital Cities

Word Analogies

Type of relationship	Word Pair 1		Word Pair 2	
Common capital city	Athens	Greece	Oslo	Norway
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe
Currency	Angola	kwanza	Iran	rial
City-in-state	Chicago	Illinois	Stockton	California
Man-Woman	brother	sister	grandson	granddaughter
Adjective to adverb	apparent	apparently	rapid	rapidly
Opposite	possibly	impossibly	ethical	unethical
Comparative	great	greater	tough	tougher
Superlative	easy	easiest	lucky	luckiest
Present Participle	think	thinking	read	reading
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian
Past tense	walking	walked	swimming	swam
Plural nouns	mouse	mice	dollar	dollars
Plural verbs	work	works	speak	speaks

Word Relationships

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Multi-Modal Skip-Gram

The skip-gram model can be augmented using visual features from images labeled with words from the corpus. We first extract mean activations \mathbf{u}_{j} for each word from the highest (fully connected) layers of a CNN model like AlexNet. The objective function then becomes
$E=\frac{1}{T} \sum_{t=1}^{T}\left(E_{\text {ling }}+E_{\text {image }}\right), \quad$ where $\quad E_{\text {ling }}=\sum_{-c \leq r \leq c, r \neq 0} \log \operatorname{prob}\left(w_{t+r} \mid w_{t}\right)$
$E_{\text {image }}=\left\{\begin{array}{c}0, \quad \text { if } w_{t} \text { does not occur in ImageNet, } \\ -\sum_{j \in \mathcal{W}_{\text {neg }}} \max \left(0, \gamma-\cos \left(\mathbf{u}_{w_{t}}, \mathbf{v}_{w_{t}}\right)+\cos \left(\mathbf{u}_{w_{t}}, \mathbf{v}_{j}\right)\right), \quad \text { otherwise. }\end{array}\right.$
This encourages things that look similar to have closer representations.

Bidirectional Recurrent Encoder

s_{i}

(Economic, growth, has, slowed, down, in, recent, year

Neural Translation

COMP9444
© Alan Blair, 201

Attention Mechanism

Google Neural Machine Translation

T. Mikolov, K. Chen, G. Corrado \& J. Dean, 2013. "Efficient estimation of word representations in vector space", arXiv preprint arXiv:1301.3781.
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado \& J. Dean, 2013. "Distributed representations of words and phrases and their compositionality", NIPS 2013, 3111-19.

Xin Rong, 2014. "word2vec parameter learning explained.", arXiv:1411.2738.
https://devblogs.nvidia.com/parallelforall/
introduction-neural-machine-translation-gpus-part-3/

Captioning, with Attention

сомР9444
© Alan Blair, 201

References

