COMP9444
Neural Networks and Deep Learning

10. Deep Reinforcement Learning



COMP9444 17s2 Deep Reinforcement Learning

Outline

History of Reinforcement Learning

Deep Q-Learning for Atari Games
Actor-Critic

Asynchronous Advantage Actor Critic (A3C)

Evolutionary/Variational methods

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Reinforcement Learning Timeline

model-free methods

1961 MENACE tic-tac-toe (Donald Michie)

1986 TDQ) (Rich Sutton)

1989 TD-Gammon (Gerald Tesauro)

2015 Deep Q Learning for Atari Games

2016 A3C (Mnih et al.)

2017 OpenAl Evolution Strategies (Salimans et al.)

methods relying on a world model

1959 Checkers (Arthur Samuel)
1997 TD-leaf (Baxter et al.)
2009 TreeStrap (Veness et al.)
2016 Alpha Go (Silver et al.)

COMP9444 ©Alan Blair, 2017



i .

: .n TIN ]

o Baze ® 2 ig a8

..l.h [ &

Deep Reinforcement Learning

Machine Educable Noughts And Crosses Engine
Donald Michie, 1961

MENACE

COMP9444 17s2

©Alan Blair, 2017

COMP9444



Deep Reinforcement Learn

COMP9444 17s2

MENACE




COMP9444 17s2 Deep Reinforcement Learning

Game Tree (2-player, deterministic)

MAX (X)
X X X
MIN (O) X X X
X X X
x|o x| [o] [x
MAX (X) 0
X[O[X X0 X|O
MIN (O) X X
X|0| X X|O| X X|0O| X
TERMINAL OfX O|O0|X X
O X| X|O X|O|O
Utility -1 0 +1

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Martin Gardner and HALO

THE UNEXPECTED HANGING
AND OTHER
MATHEMATICAL

_ DIVERSIONS

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Hexapawn Boxes

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Reinforcement Learning with BOXES

this BOXES algorithm was later adapted to learn more geniaséis
such as Pole Balancing, and helped lay the foundation fomtbabern
field of Reinforcement Learning

for various reasons, interest in Reinforcement Learningdan the
late 70’s and early 80’s, but was revived in the late 198@sydly
through the work of Richard Sutton

Gerald Tesauro applied Sutton’s TD-Learning algorithmhe game
of Backgammon in 1989

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Deep Q-Learning for Atari Games

end-to-end learning of valu€y(s,a) from pixelss

Input states is stack of raw pixels from last 4 frames
8-bit RGB images, 218 160 pixels

output isQ(s, a) for 18 joystick/button positions

reward is change in score for that timestep

32 4x4 filters 256 hidden units Fully-connected linear
output layer

16 8x8 filters

4x84x84 ITL\

=

Stack of 4 previous ) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 10

Deep Q-Network

Convglution Convglution Fully cgnnected Fully cgnnected

A
&DDD

7] \tl /7T TAN ,oﬂ§\1 /7]
mnEtn:m/u doooobh  ddo

>

=T
=R
A
S
(O,
(2O,
(€O
e

N\ /
Do o

e
dodon

K+O

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Q-Learning

Qs a) « Q(si. &) +n[re+ymaxQ(s.+1,b) — Q(s;, &)
with lookup table, Q-learning is guaranteed to eventuadiyverge
for serious tasks, there are too many states for a lookup tabl

iInstead Qu(s,a) is parametrized by weights, which get updated so
as to minimize

[t +YMaxQu(st+1,0) — Qu(s, a)I?
note: gradient is applied only ©Qu(s,at), not toQy(S+1,b)

this works well for some tasks, but is challenging for Ataainges,
partly due to temporal correlations between samples
(i.e. large number of similar situations occurring onerafte other)

COMP9444 ©Alan Blair, 2017

11



COMP9444 17s2 Deep Reinforcement Learning 12

Deep Q-Learning with Experience Replay

choose actions using current Q functi@ngfeedy)
build a database of experiendes, a;, I, S+1)

sample asynchronously from database and apply updatentmime
[re+YMaxQu(si1,b) — Quls, &)

removes temporal correlations by sampling from variety arhg
situations in random order

makes it easier to parallelize the algorithm on multiple GPU

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 13

At human-level or above
Below human-level

T T T T l”l
00 200 300 400 500 600 1,000

h"llli“l“““|.li“llllii-" Steges

DON Results for Atari Games
]

' l

|||||

A
:

COMP9444 ©Alan Blair, 2017

.—




COMP9444 17s2 Deep Reinforcement Learning

DQN Improvements

Prioritised Replay
weight experience according to surprise

Double Q-Learning
current Q-networkyv is used toselectactions

older Q-networlkw is used taevaluateactions

Advantage Function
action-independentalue functionvy(s)

action-dependeradvantage functioAy(s,a)
Q(s,a) =Wu(s) + Aw(s,a)

COMP9444 ©Alan Blair, 2017

14



COMP9444 17s2 Deep Reinforcement Learning 15

Prioritised Replay

Instead of sampling experiences uniformly, store them in@ipy
gueue according to the DON error

If +ym§wa(st+1, b) — Qu(s, &)

this ensures the system will concentrate more effort orasdos
where the Q value was “surprising” (in the sense of being faya
from what was predicted)

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 16

Double Q-Learning

If the same weightsv are used to select actions and evaluate actions,
this can lead to a kind of confirmation bias

could maintain two sets of weightg andw, with one used for
selection and the other for evaluation (then swap theisjole

In the context of Deep Q-Learning, a simpler approach is &the
current “online” version ofw for selection, and an older “target”
versionw for evaluation; we therefore minimize

1t + YQu(St+1, argmax Qu(s+1,b)) — Qu(s, &)l

a new version ofv is periodically calculated from the distributed
values ofw, and thisw is broadcast to all processors.

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 17

Advantage Function

The Q FunctiorQ"(s,a) can be written as a sum of the value function
V'(s) plus anadvantage functioA”(s,a) = Q"(s,a) —V'(9)

A(s a) represents the advantage (or disadvantage) of takinghaectio
states, compared to taking the action preferred by the currencpati
We can learn approximations for these two components sehara

Q(s,a) =Vu(s) + Aw(s,a)

Note that actions can be selected just ughigs, a), because

argmay, Q(s+1,b) = argmax Aw(s+1,b)

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 18

Policy Gradients and Actor-Critic

Recall:
Oefitnesgmg) = En, [Q™(s,a)TglogT(als) ]

For non-episodic games, we cannot easily find a good estifoate
Q™(s,a). One approach is to consider a family of Q-FunctiG}s
determined by parametevs (different from8) and learnw so that
Qw approximate)’, at the same time that the policy itself is also
being learned.

This is known as arctor-Critic approach because the policy determines
the action, while the Q-Function estimates how good thestiipolicy is,
and thereby plays the role of a critic.

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Actor Critic Algorithm

for each trial
sampleag from 11(a|sy)
for each timestep do
sample reward; from R (r | &, &)
sample next statg 1 from o(s| s, &)
sample actiora 1 fromm(a|s1)

96 = —[re+VQu(sr1,a11) — Qu(s, )]
0+ 0+nNoQuw(s,a)glogmg(a: | S)

W~ W—Nw 56 OwQu(s, &)
end

end

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 20

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baselrmuld be subtracted
from rigtal
6 < 8+ N (riota— b)Ue logTh (2| )

In the actor-critic framework;otq is replaced byQ(s, &)

0+ 0+neQ(s,a)elogmy(a; | )

We can also subtract a baseline fré)(s;, a;). This baseline must be
independent of the actiog, but it could be dependent on the state
A good choice of baseline is the value functi(s), in which case the
Q function is replaced by the advantage function

An(s,a) = Q(s,a) —Vu(s)

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Asynchronous Advantage Actor Critic

use policy network to choose actions
learn a parameterized Value functigg(s) by TD-Learning

estimate Q-value by n-step sample
Q(st,a) = Mo +Yresz+ - +Y" g +Y™Vu(Stn)
update policy by
6« 8+ne[Q(s,a) —Vu(s)]DologTe (& | )
update Value function my minimizing

Qs &) —Vu(s)]?

COMP9444 ©Alan Blair, 2017

21



COMP9444 17s2 Deep Reinforcement Learning 22

Hill Climbing

Initialize “champ” policy Ochamp= 0

for each trial, generate “mutant” policy

Omutant= Bchampt Gaussian noise (fixea)

champ and mutant play up ftogames, with same game initial
conditions (i.e. same seed for generating dice rolls)

If mutant does “better” than champ,

echamp% echamp‘l‘ a (emutant— echamp)

“better” means the mutant must score higher than the chartiein
first game, and at least as high as the champ in each subseaineat

COMP9444 ©Alan Blair, 2017



COMP9444 17s2

Simulated Hockey

Deep Reinforcement Learning

COMP9444

©Alan Blair, 2017

23



COMP9444 17s2 Deep Reinforcement Learning

Shock Physics

rectangular rink with rounded corners
near-frictionless playing surface
“spring” method of collision handling

frictionless puck (never acquires any spin)

COMP9444

@®©Alan Blair, 2017

24



COMP9444 17s2 Deep Reinforcement Learning

Shock Actuators

| eft skate ri ght skate

(XL, W) (Xgs Yr)

a skate at each end of the vehicle with which it can push onirlke r
In two independent directions

COMP9444 ©Alan Blair, 2017

25



COMP9444 17s2 Deep Reinforcement Learning

Shock Sensors

6 Braitenberg-style sensors equally spaced around thelgehi

each sensor has an angular range of @dh an overlap of 30
between neighbouring sensors

COMP9444 ©Alan Blair, 2017

26



COMP9444 17s2 Deep Reinforcement Learning

Shock Inputs

each of the 6 sensors responds to three different stimuli
ball / puck

own goal

opponent goal
3 additional inputs specify the current velocity of the \abi

total of 3x 64+ 3 =21 inputs

COMP9444 ©Alan Blair, 2017

27



COMP9444 17s2

Deep Reinforcement Learning

Shock Agent

COMP9444

puck O
enemy goal()
friendly goal O

sensor 1

puck O
sensor enemy goalO)
friendly goal O

puck O
sensor 2 enemy goalO)
friendly goal O

puck O
enemy goal()
friendly goal O

1
{

sensor

sensor enemy goal(O)

friendly goal O

puck O
sensor enemy goal()
friendly goal O

_ longitudinal (left skate)O)
velocity 4 |ongitudinal (right skate)O

lateral O

output
O Vector

O z

\\ //

©Alan Blair, 2017

28



COMP9444 17s2 Deep Reinforcement Learning

Shock Agent

Perceptron with 21 inputs and 4 outputs
total of 4x (21+ 1) = 88 parameters

mutation = add Gaussian random noise to each parameter,
with standard deviation 0.05

a=0.1

COMP9444 ©Alan Blair, 2017

29



COMP9444 17s2 Deep Reinforcement Learning

Shock Task

each game begins with a random “game initial condition”
random position for puck

random position and orientation for player

each game ends with
+1 if puck — enemy goal
-1 if puck — own goal

O if time limit expires

COMP9444 ©Alan Blair, 2017

30



COMP9444 17s2

Evolved Behavior

Deep Reinforcement Learning

COMP9444

®©Alan Blair, 2017

31



COMP9444 17s2 Deep Reinforcement Learning

Evolutionary/Variational Methods

initialize meanu = {|; }1<i<m and standard deviatioo = {0j } 1<i<m

for each trial, colleck samples from a Gaussian distribution
6i =W +nioi where ni~2(0,1)
sometimes include “mirrored” sampl€s = | — n; O

evaluate each samp&to compute score or “fitnes<* (0)

update meam by _
hp+a(F(0)—F)(@—p

o = learning rateF = baseline

sometimesg is updated as well

COMP9444 ©Alan Blair, 2017

32



COMP9444 17s2 Deep Reinforcement Learning

OpenAl Evolution Strategies

Evolutionary Strategy with fixed

since onlyu is updated, computation can be distributed across many
processors

applied to Atari Pong, MuJoCo humanoid walking

competitive with Deep Q-Learning on these tasks

COMP9444 ©Alan Blair, 2017

33



COMP9444 17s2 Deep Reinforcement Learning

Methods for Updating Sigma

Evolutionary Strategy
select top 20% of samples and fit a new Gaussian distribution

Variational Inference
minimize Reverse KL-Divergence

backpropagate differentials through network, or diff¢iste with
respect tqy;, Oj

COMP9444 ©Alan Blair, 2017

34



COMP9444 17s2 Deep Reinforcement Learning 35

Variational Inference

let q(8) be the Gaussian distribution determinedihy
we wantq(0) to be concentrated in regions whe¥¢0) is high

score functiorF (8) determines a Boltzmann (softmax) distribution

8 e~ TF(®)

T = temperatureZ = normalizing constant

we can try to minimize the reverse Kullback-Leibler (KL) Brgence
betweemy(6) andpr(0)

Dke (@] pr) = /e q(6)(log q(6) —log pr(6))dd

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 36

Variational Inference

Dke (@[ pr) = /e q(6)(log q(6) —log pr(6))dd

_ %/eq(G)(F(G) +Tlogq(8) + TlogZz)de

the last terml logZ is constant, so its value is not important
(in fact, an arbitrariy baseliné can be subtracted frof(0))

Tlogq(8) can be seen as a regularizing term which maintains some
variation and preventg(0) from collapsing to a single point

If we only updatep and notao, this term is not needed

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 37

KL-Divergence and Entropy

theentropyof a distributionq() /q )(—logq(8))de

In Information Theory, Hf) is the amount of information (bits)
required to transmit a random sample from distributioh

for a Gaussian distribution, H(q) = Z log o
KL-Divergence  py (qllp) = / (8)(loga(6) —log p(8))de

DkL (g p) is the number ofxtrabits we need to trasmit if we
designed a code fgo() but then the samples are drawn frah
instead.

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning

Forward KL-Divergence

OK, KL small
Q(z)

COMP9444 (©Alan Blair, 2017

38



COMP9444 17s2 Deep Reinforcement Learning

Reverse KL-Divergence

P(Z)

Not OK,
Reverse-KL large

a

OK, KL small

Q(z) P(Z)

COMP9444

©Alan Blair, 2017

39



COMP9444 17s2 Deep Reinforcement Learning 40

KL-Divergence

KL-Divergence is used in some policy-based deep reinfoergm
learning algorithms such as Trust Region Policy Optimaa{ir PRO)
(but we will not cover these in detail).

KL-Divergence is also important in other areas of Deep Leagn
such as Variational Autoencoders.

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 41

Latest Research in Deep RL

augment A3C with unsupervised auxiliary tasks
encourage exploration, increased entropy
encourage actions for which the rewards are less predectabl

concentrate on state features from which the precedingraitimore
predictable

transfer learning (between tasks)
Inverse reinforcement learning (infer rewards from paglicy
hierarchical RL

multi-agent RL

COMP9444 ©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 42

References

David Silver, Deep Reinforcement Learning Tutorial,
http://icml.cc/2016/tutorials/deep_rl tutorial.pdf

A Brief Survey of Deep Reinforcement Learning,
https://arxiv.org/abs/1708.05866

Asynchronous Methods for Deep Reinforcement Learning,
https://arxiv.org/abs/1602.01783

Evolution Strategies as a Scalable Alternative to Reirgorent
Learning,https://arxiv.org/abs/1703.03864

Eric Jang, Beginner’'s Guide to Variational Methods,
http://blog.evjang.com/2016/08/variational-bayes.html

COMP9444 ©Alan Blair, 2017



