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Outline

� History of Reinforcement Learning

� Deep Q-Learning for Atari Games

� Actor-Critic

� Asynchronous Advantage Actor Critic (A3C)

� Evolutionary/Variational methods
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Reinforcement Learning Timeline

� model-free methods

◮ 1961 MENACE tic-tac-toe (Donald Michie)
◮ 1986 TD(λ) (Rich Sutton)
◮ 1989 TD-Gammon (Gerald Tesauro)
◮ 2015 Deep Q Learning for Atari Games
◮ 2016 A3C (Mnih et al.)
◮ 2017 OpenAI Evolution Strategies (Salimans et al.)

� methods relying on a world model

◮ 1959 Checkers (Arthur Samuel)
◮ 1997 TD-leaf (Baxter et al.)
◮ 2009 TreeStrap (Veness et al.)
◮ 2016 Alpha Go (Silver et al.)
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MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961
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MENACE
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Game Tree (2-player, deterministic)
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Martin Gardner and HALO

COMP9444 c©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 7

Hexapawn Boxes

COMP9444 c©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 8

Reinforcement Learning with BOXES

� this BOXES algorithm was later adapted to learn more generaltasks

such as Pole Balancing, and helped lay the foundation for themodern

field of Reinforcement Learning

� for various reasons, interest in Reinforcement Learning faded in the

late 70’s and early 80’s, but was revived in the late 1980’s, largely

through the work of Richard Sutton

� Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game

of Backgammon in 1989
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Deep Q-Learning for Atari Games

� end-to-end learning of valuesQ(s,a) from pixels s

� input states is stack of raw pixels from last 4 frames

◮ 8-bit RGB images, 210×160 pixels

� output isQ(s,a) for 18 joystick/button positions

� reward is change in score for that timestep
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Deep Q-Network

COMP9444 c©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 11

Q-Learning

Q(st ,at)←Q(st ,at)+η [ rt + γ max
b

Q(st+1,b)−Q(st ,at)]

� with lookup table, Q-learning is guaranteed to eventually converge

� for serious tasks, there are too many states for a lookup table

� instead,Qw(s,a) is parametrized by weightsw, which get updated so
as to minimize

[ rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

◮ note: gradient is applied only toQw(st ,at), not toQw(st+1,b)

� this works well for some tasks, but is challenging for Atari games,
partly due to temporal correlations between samples
(i.e. large number of similar situations occurring one after the other)
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Deep Q-Learning with Experience Replay

� choose actions using current Q function (ε-greedy)

� build a database of experiences(st ,at , rt ,st+1)

� sample asynchronously from database and apply update, to minimize

[ rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

� removes temporal correlations by sampling from variety of game

situations in random order

� makes it easier to parallelize the algorithm on multiple GPUs
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DQN Results for Atari Games
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DQN Improvements

� Prioritised Replay

◮ weight experience according to surprise

� Double Q-Learning

◮ current Q-networkw is used toselectactions

◮ older Q-networkw is used toevaluateactions

� Advantage Function

◮ action-independentvalue functionVu(s)

◮ action-dependentadvantage functionAw(s,a)

Q(s,a) =Vu(s)+Aw(s,a)
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Prioritised Replay

� instead of sampling experiences uniformly, store them in a priority

queue according to the DQN error

| rt + γ max
b

Qw(st+1,b)−Qw(st ,at)|

� this ensures the system will concentrate more effort on situations

where the Q value was “surprising” (in the sense of being far away

from what was predicted)
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Double Q-Learning

� if the same weightsw are used to select actions and evaluate actions,

this can lead to a kind of confirmation bias

� could maintain two sets of weightsw andw, with one used for

selection and the other for evaluation (then swap their roles)

� in the context of Deep Q-Learning, a simpler approach is to use the

current “online” version ofw for selection, and an older “target”

versionw for evaluation; we therefore minimize

[ rt + γQw(st+1,argmaxbQw(st+1,b))−Qw(st ,at)]
2

� a new version ofw is periodically calculated from the distributed

values ofw, and thisw is broadcast to all processors.

COMP9444 c©Alan Blair, 2017



COMP9444 17s2 Deep Reinforcement Learning 17

Advantage Function

The Q FunctionQπ(s,a) can be written as a sum of the value function

Vπ(s) plus anadvantage functionAπ(s,a) = Qπ(s,a)−Vπ(s)

Aπ(s,a) represents the advantage (or disadvantage) of taking action a in

states, compared to taking the action preferred by the current policy π.

We can learn approximations for these two components separately:

Q(s,a) =Vu(s)+Aw(s,a)

Note that actions can be selected just usingAw(s,a), because

argmaxbQ(st+1,b) = argmaxb Aw(st+1,b)
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Policy Gradients and Actor-Critic

Recall:

∇θ fitness(πθ) = Eπθ [Q
πθ(s,a)∇θ logπθ(a|s) ]

For non-episodic games, we cannot easily find a good estimatefor

Qπθ(s,a). One approach is to consider a family of Q-FunctionsQw

determined by parametersw (different from θ) and learnw so that

Qw approximatesQπθ , at the same time that the policyπθ itself is also

being learned.

This is known as anActor-Critic approach because the policy determines

the action, while the Q-Function estimates how good the current policy is,

and thereby plays the role of a critic.
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Actor Critic Algorithm

for each trial

samplea0 from π(a|s0)

for each timestept do

sample rewardrt fromR (r |st ,at)

sample next statest+1 from δ(s|st ,at)

sample actionat+1 from π(a|st+1)
dE
dQ =−[rt + γQw(st+1,at+1)−Qw(st ,at)]

θ← θ+ηθ Qw(st ,at)∇θ logπθ(at |st)

w← w−ηw
dE
dQ ∇wQw(st ,at)

end

end
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Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baselineb could be subtracted
from rtotal

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

In the actor-critic framework,rtotal is replaced byQ(st ,at)

θ← θ+ηθ Q(st ,at)∇θ logπθ(at |st)

We can also subtract a baseline fromQ(st ,at). This baseline must be
independent of the actionat , but it could be dependent on the statest .
A good choice of baseline is the value functionVu(s), in which case the
Q function is replaced by the advantage function

Aw(s,a) = Q(s,a)−Vu(s)
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Asynchronous Advantage Actor Critic

� use policy network to choose actions

� learn a parameterized Value functionVu(s) by TD-Learning

� estimate Q-value by n-step sample

Q(st ,at) = rt+1+ γ rt+2+ . . .+ γn−1rt+n+ γnVu(st+n)

� update policy by

θ← θ+ηθ [Q(st ,at)−Vu(st)]∇θ logπθ(at |st)

� update Value function my minimizing

[Q(st ,at)−Vu(st)]
2
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Hill Climbing

� Initialize “champ” policy θchamp= 0

� for each trial, generate “mutant” policy

θmutant= θchamp+Gaussian noise (fixedσ)

� champ and mutant play up ton games, with same game initial

conditions (i.e. same seed for generating dice rolls)

� if mutant does “better” than champ,

θchamp← θchamp+α(θmutant−θchamp)

� “better” means the mutant must score higher than the champ inthe

first game, and at least as high as the champ in each subsequentgame.
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Simulated Hockey
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Shock Physics

� rectangular rink with rounded corners

� near-frictionless playing surface

� “spring” method of collision handling

� frictionless puck (never acquires any spin)
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Shock Actuators

L(x ,y )L (x ,y )R R

right skateleft skate

� a skate at each end of the vehicle with which it can push on the rink

in two independent directions
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Shock Sensors

� 6 Braitenberg-style sensors equally spaced around the vehicle

� each sensor has an angular range of 90◦ with an overlap of 30◦

between neighbouring sensors
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Shock Inputs

� each of the 6 sensors responds to three different stimuli

◮ ball / puck

◮ own goal

◮ opponent goal

� 3 additional inputs specify the current velocity of the vehicle

� total of 3×6+3= 21 inputs
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Shock Agent
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Shock Agent

� Perceptron with 21 inputs and 4 outputs

� total of 4× (21+1) = 88 parameters

� mutation = add Gaussian random noise to each parameter,

with standard deviation 0.05

� α = 0.1
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Shock Task

� each game begins with a random “game initial condition”

◮ random position for puck

◮ random position and orientation for player

� each game ends with

◮ +1 if puck→ enemy goal

◮ -1 if puck→ own goal

◮ 0 if time limit expires
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Evolved Behavior
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Evolutionary/Variational Methods

� initialize meanµ= {µi}1≤i≤m and standard deviationσ = {σi}1≤i≤m

� for each trial, collectk samples from a Gaussian distribution

θi = µi +ηi σi where ηi ∼N (0,1)

� sometimes include “mirrored” samplesθi = µi−ηi σi

� evaluate each sampleθ to compute score or “fitness”F(θ)

� update meanµ by
µ← µ+α(F(θ)−F)(θ−µ)

◮ α = learning rate,F = baseline

� sometimes,σ is updated as well
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OpenAI Evolution Strategies

� Evolutionary Strategy with fixedσ

� since onlyµ is updated, computation can be distributed across many

processors

� applied to Atari Pong, MuJoCo humanoid walking

� competitive with Deep Q-Learning on these tasks
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Methods for Updating Sigma

� Evolutionary Strategy

◮ select top 20% of samples and fit a new Gaussian distribution

� Variational Inference

◮ minimize Reverse KL-Divergence

◮ backpropagate differentials through network, or differentiate with

respect toµi , σi
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Variational Inference

� let q(θ) be the Gaussian distribution determined byµ, σ

� we wantq(θ) to be concentrated in regions whereF(θ) is high

� score functionF(θ) determines a Boltzmann (softmax) distribution

pT(θ) =
e−

1
T F(θ)

Z

◮ T = temperature,Z = normalizing constant

� we can try to minimize the reverse Kullback-Leibler (KL) Divergence

betweenq(θ) andpT(θ)

DKL (q|| pT) =
∫

θ
q(θ)(log q(θ)− log pT(θ))dθ
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Variational Inference

DKL (q||pT) =
∫

θ
q(θ)(log q(θ)− log pT(θ))dθ

=
1
T

∫
θ
q(θ)(F(θ)+T log q(θ)+T logZ)dθ

� the last termT logZ is constant, so its value is not important

(in fact, an arbitrariy baselineF can be subtracted fromF(θ))

� T log q(θ) can be seen as a regularizing term which maintains some

variation and preventsq(θ) from collapsing to a single point

◮ if we only updateµ and notσ, this term is not needed
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KL-Divergence and Entropy

� theentropyof a distributionq() is H(q) =
∫

θ
q(θ)(− logq(θ))dθ

� in Information Theory, H(q) is the amount of information (bits)

required to transmit a random sample from distributionq()

� for a Gaussian distribution, H(q) = ∑
i

log σi

� KL-Divergence DKL (q|| p) =
∫

θ
q(θ)(log q(θ)− log p(θ))dθ

� DKL (q|| p) is the number ofextrabits we need to trasmit if we

designed a code forp() but then the samples are drawn fromq()

instead.
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Forward KL-Divergence
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Reverse KL-Divergence
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KL-Divergence

� KL-Divergence is used in some policy-based deep reinforcement

learning algorithms such as Trust Region Policy Optimization (TPRO)

(but we will not cover these in detail).

� KL-Divergence is also important in other areas of Deep Learning,

such as Variational Autoencoders.
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Latest Research in Deep RL

� augment A3C with unsupervised auxiliary tasks

� encourage exploration, increased entropy

� encourage actions for which the rewards are less predictable

� concentrate on state features from which the preceding action is more

predictable

� transfer learning (between tasks)

� inverse reinforcement learning (infer rewards from policy)

� hierarchical RL

� multi-agent RL
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