
COMP9444 17s2 Deep Reinforcement Learning 2

Reinforcement Learning Timeline

� model-free methods

◮ 1961 MENACE tic-tac-toe (Donald Michie)
◮ 1986 TD(λ) (Rich Sutton)
◮ 1989 TD-Gammon (Gerald Tesauro)
◮ 2015 Deep Q Learning for Atari Games
◮ 2016 A3C (Mnih et al.)
◮ 2017 OpenAI Evolution Strategies (Salimans et al.)

� methods relying on a world model

◮ 1959 Checkers (Arthur Samuel)
◮ 1997 TD-leaf (Baxter et al.)
◮ 2009 TreeStrap (Veness et al.)
◮ 2016 Alpha Go (Silver et al.)

COMP9444 c©Alan Blair, 2017

COMP9444
Neural Networks and Deep Learning

10. Deep Reinforcement Learning

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 3

MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 1

Outline

� History of Reinforcement Learning

� Deep Q-Learning for Atari Games

� Actor-Critic

� Asynchronous Advantage Actor Critic (A3C)

� Evolutionary/Variational methods

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 6

Martin Gardner and HALO

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 4

MENACE

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 7

Hexapawn Boxes

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 5

Game Tree (2-player, deterministic)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 10

Deep Q-Network

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 8

Reinforcement Learning with BOXES

� this BOXES algorithm was later adapted to learn more generaltasks

such as Pole Balancing, and helped lay the foundation for themodern

field of Reinforcement Learning

� for various reasons, interest in Reinforcement Learning faded in the

late 70’s and early 80’s, but was revived in the late 1980’s, largely

through the work of Richard Sutton

� Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game

of Backgammon in 1989

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 11

Q-Learning

Q(st ,at)←Q(st ,at)+η [rt + γ max
b

Q(st+1,b)−Q(st ,at)]

� with lookup table, Q-learning is guaranteed to eventually converge

� for serious tasks, there are too many states for a lookup table

� instead,Qw(s,a) is parametrized by weightsw, which get updated so
as to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

◮ note: gradient is applied only toQw(st ,at), not toQw(st+1,b)

� this works well for some tasks, but is challenging for Atari games,
partly due to temporal correlations between samples
(i.e. large number of similar situations occurring one after the other)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 9

Deep Q-Learning for Atari Games

� end-to-end learning of valuesQ(s,a) from pixels s

� input states is stack of raw pixels from last 4 frames

◮ 8-bit RGB images, 210×160 pixels

� output isQ(s,a) for 18 joystick/button positions

� reward is change in score for that timestep

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 14

DQN Improvements

� Prioritised Replay

◮ weight experience according to surprise

� Double Q-Learning

◮ current Q-networkw is used toselectactions

◮ older Q-networkw is used toevaluateactions

� Advantage Function

◮ action-independentvalue functionVu(s)

◮ action-dependentadvantage functionAw(s,a)

Q(s,a) =Vu(s)+Aw(s,a)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 12

Deep Q-Learning with Experience Replay

� choose actions using current Q function (ε-greedy)

� build a database of experiences(st ,at , rt ,st+1)

� sample asynchronously from database and apply update, to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

� removes temporal correlations by sampling from variety of game

situations in random order

� makes it easier to parallelize the algorithm on multiple GPUs

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 15

Prioritised Replay

� instead of sampling experiences uniformly, store them in a priority

queue according to the DQN error

| rt + γ max
b

Qw(st+1,b)−Qw(st ,at)|

� this ensures the system will concentrate more effort on situations

where the Q value was “surprising” (in the sense of being far away

from what was predicted)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 13

DQN Results for Atari Games

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 18

Policy Gradients and Actor-Critic

Recall:

∇θ fitness(πθ) = Eπθ [Q
πθ(s,a)∇θ logπθ(a|s)]

For non-episodic games, we cannot easily find a good estimatefor

Qπθ(s,a). One approach is to consider a family of Q-FunctionsQw

determined by parametersw (different from θ) and learnw so that

Qw approximatesQπθ , at the same time that the policyπθ itself is also

being learned.

This is known as anActor-Critic approach because the policy determines

the action, while the Q-Function estimates how good the current policy is,

and thereby plays the role of a critic.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 16

Double Q-Learning

� if the same weightsw are used to select actions and evaluate actions,

this can lead to a kind of confirmation bias

� could maintain two sets of weightsw andw, with one used for

selection and the other for evaluation (then swap their roles)

� in the context of Deep Q-Learning, a simpler approach is to use the

current “online” version ofw for selection, and an older “target”

versionw for evaluation; we therefore minimize

[rt + γQw(st+1,argmaxbQw(st+1,b))−Qw(st ,at)]
2

� a new version ofw is periodically calculated from the distributed

values ofw, and thisw is broadcast to all processors.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 19

Actor Critic Algorithm

for each trial

samplea0 from π(a|s0)

for each timestept do

sample rewardrt fromR (r |st ,at)

sample next statest+1 from δ(s|st ,at)

sample actionat+1 from π(a|st+1)
dE
dQ =−[rt + γQw(st+1,at+1)−Qw(st ,at)]

θ← θ+ηθ Qw(st ,at)∇θ logπθ(at |st)

w← w−ηw
dE
dQ ∇wQw(st ,at)

end

end

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 17

Advantage Function

The Q FunctionQπ(s,a) can be written as a sum of the value function

Vπ(s) plus anadvantage functionAπ(s,a) = Qπ(s,a)−Vπ(s)

Aπ(s,a) represents the advantage (or disadvantage) of taking action a in

states, compared to taking the action preferred by the current policy π.

We can learn approximations for these two components separately:

Q(s,a) =Vu(s)+Aw(s,a)

Note that actions can be selected just usingAw(s,a), because

argmaxbQ(st+1,b) = argmaxb Aw(st+1,b)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 22

Hill Climbing

� Initialize “champ” policy θchamp= 0

� for each trial, generate “mutant” policy

θmutant= θchamp+Gaussian noise (fixedσ)

� champ and mutant play up ton games, with same game initial

conditions (i.e. same seed for generating dice rolls)

� if mutant does “better” than champ,

θchamp← θchamp+α(θmutant−θchamp)

� “better” means the mutant must score higher than the champ inthe

first game, and at least as high as the champ in each subsequentgame.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 20

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baselineb could be subtracted
from rtotal

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

In the actor-critic framework,rtotal is replaced byQ(st ,at)

θ← θ+ηθ Q(st ,at)∇θ logπθ(at |st)

We can also subtract a baseline fromQ(st ,at). This baseline must be
independent of the actionat , but it could be dependent on the statest .
A good choice of baseline is the value functionVu(s), in which case the
Q function is replaced by the advantage function

Aw(s,a) = Q(s,a)−Vu(s)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 23

Simulated Hockey

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 21

Asynchronous Advantage Actor Critic

� use policy network to choose actions

� learn a parameterized Value functionVu(s) by TD-Learning

� estimate Q-value by n-step sample

Q(st ,at) = rt+1+ γ rt+2+ . . .+ γn−1rt+n+ γnVu(st+n)

� update policy by

θ← θ+ηθ [Q(st ,at)−Vu(st)]∇θ logπθ(at |st)

� update Value function my minimizing

[Q(st ,at)−Vu(st)]
2

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 26

Shock Sensors

� 6 Braitenberg-style sensors equally spaced around the vehicle

� each sensor has an angular range of 90◦ with an overlap of 30◦

between neighbouring sensors

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 24

Shock Physics

� rectangular rink with rounded corners

� near-frictionless playing surface

� “spring” method of collision handling

� frictionless puck (never acquires any spin)

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 27

Shock Inputs

� each of the 6 sensors responds to three different stimuli

◮ ball / puck

◮ own goal

◮ opponent goal

� 3 additional inputs specify the current velocity of the vehicle

� total of 3×6+3= 21 inputs

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 25

Shock Actuators

L(x ,y)L (x ,y)R R

right skateleft skate

� a skate at each end of the vehicle with which it can push on the rink

in two independent directions

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 30

Shock Task

� each game begins with a random “game initial condition”

◮ random position for puck

◮ random position and orientation for player

� each game ends with

◮ +1 if puck→ enemy goal

◮ -1 if puck→ own goal

◮ 0 if time limit expires

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 28

Shock Agent

friendly goal
enemy goal

puck{
friendly goal

enemy goal
puck{

friendly goal
enemy goal

puck{

friendly goal
enemy goal

puck{
friendly goal

enemy goal
puck{

friendly goal
enemy goal

puck{ output
vector

z

velocity

sensor 0

sensor 4

sensor 5

sensor 3

sensor 2

sensor 1

{ longitudinal (left skate)

longitudinal (right skate)

lateral

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 31

Evolved Behavior

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 29

Shock Agent

� Perceptron with 21 inputs and 4 outputs

� total of 4× (21+1) = 88 parameters

� mutation = add Gaussian random noise to each parameter,

with standard deviation 0.05

� α = 0.1

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 34

Methods for Updating Sigma

� Evolutionary Strategy

◮ select top 20% of samples and fit a new Gaussian distribution

� Variational Inference

◮ minimize Reverse KL-Divergence

◮ backpropagate differentials through network, or differentiate with

respect toµi , σi

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 32

Evolutionary/Variational Methods

� initialize meanµ= {µi}1≤i≤m and standard deviationσ = {σi}1≤i≤m

� for each trial, collectk samples from a Gaussian distribution

θi = µi +ηi σi where ηi ∼N (0,1)

� sometimes include “mirrored” samplesθi = µi−ηi σi

� evaluate each sampleθ to compute score or “fitness”F(θ)

� update meanµ by
µ← µ+α(F(θ)−F)(θ−µ)

◮ α = learning rate,F = baseline

� sometimes,σ is updated as well

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 35

Variational Inference

� let q(θ) be the Gaussian distribution determined byµ, σ

� we wantq(θ) to be concentrated in regions whereF(θ) is high

� score functionF(θ) determines a Boltzmann (softmax) distribution

pT(θ) =
e−

1
T F(θ)

Z

◮ T = temperature,Z = normalizing constant

� we can try to minimize the reverse Kullback-Leibler (KL) Divergence

betweenq(θ) andpT(θ)

DKL (q|| pT) =
∫

θ
q(θ)(log q(θ)− log pT(θ))dθ

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 33

OpenAI Evolution Strategies

� Evolutionary Strategy with fixedσ

� since onlyµ is updated, computation can be distributed across many

processors

� applied to Atari Pong, MuJoCo humanoid walking

� competitive with Deep Q-Learning on these tasks

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 38

Forward KL-Divergence

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 36

Variational Inference

DKL (q||pT) =
∫

θ
q(θ)(log q(θ)− log pT(θ))dθ

=
1
T

∫
θ
q(θ)(F(θ)+T log q(θ)+T logZ)dθ

� the last termT logZ is constant, so its value is not important

(in fact, an arbitrariy baselineF can be subtracted fromF(θ))

� T log q(θ) can be seen as a regularizing term which maintains some

variation and preventsq(θ) from collapsing to a single point

◮ if we only updateµ and notσ, this term is not needed

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 39

Reverse KL-Divergence

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 37

KL-Divergence and Entropy

� theentropyof a distributionq() is H(q) =
∫

θ
q(θ)(− logq(θ))dθ

� in Information Theory, H(q) is the amount of information (bits)

required to transmit a random sample from distributionq()

� for a Gaussian distribution, H(q) = ∑
i

log σi

� KL-Divergence DKL (q|| p) =
∫

θ
q(θ)(log q(θ)− log p(θ))dθ

� DKL (q|| p) is the number ofextrabits we need to trasmit if we

designed a code forp() but then the samples are drawn fromq()

instead.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 42

References

� David Silver, Deep Reinforcement Learning Tutorial,

http://icml.cc/2016/tutorials/deep rl tutorial.pdf

� A Brief Survey of Deep Reinforcement Learning,

https://arxiv.org/abs/1708.05866

� Asynchronous Methods for Deep Reinforcement Learning,

https://arxiv.org/abs/1602.01783

� Evolution Strategies as a Scalable Alternative to Reinforcement

Learning,https://arxiv.org/abs/1703.03864

� Eric Jang, Beginner’s Guide to Variational Methods,

http://blog.evjang.com/2016/08/variational-bayes.html

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 40

KL-Divergence

� KL-Divergence is used in some policy-based deep reinforcement

learning algorithms such as Trust Region Policy Optimization (TPRO)

(but we will not cover these in detail).

� KL-Divergence is also important in other areas of Deep Learning,

such as Variational Autoencoders.

COMP9444 c©Alan Blair, 2017

COMP9444 17s2 Deep Reinforcement Learning 41

Latest Research in Deep RL

� augment A3C with unsupervised auxiliary tasks

� encourage exploration, increased entropy

� encourage actions for which the rewards are less predictable

� concentrate on state features from which the preceding action is more

predictable

� transfer learning (between tasks)

� inverse reinforcement learning (infer rewards from policy)

� hierarchical RL

� multi-agent RL

COMP9444 c©Alan Blair, 2017

