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Content Addressable Memory

Humans have the ability to retrieve something from memorgnvh
presented with only part of it.

For example,

To be or not to be, ...
| came, | saw, ...

Can we recreate this in computers?
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Auto-Associative Memory
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Energy Based Models
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basin of attraction
We can try to define an energy functiét{x) in configuration space, in
such a way that the local minima of this energy function cgposd to the

stored items.
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Hopfield Network

Consider a state space where each configuration (stata$tsoofsa vector
X = {Xj }1<j<d, With eachx; = either+1 or -1
We can define an energy function as

E(X) = —(%inwinjJrzbiXi)
I, ] I

We normally assumesj = O for all i, andw;j = wj; for all i, |.
These look very much like the weights and biases of a neutalank.

But, it differs from the feedforward networks we are used to.
The components (neurong)do not vary continuously, but instead

take only the discrete valuesl and+1
neurons are iteratively updated, either synchronouslysgna
chronously, based on the current values of the neighboenigams
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Hopfield Network

E(X) = —(%inwinjJrzbiXi)
I, ] I

Start with an initial statex and then repeatedly try to “flip” neuron
activations one at a time, in order to reach a lower-enerape stif we
choose to modify neurox, its new value should be

r—l-l, If ZjWinj—I-bi>O,
Xi<— 4 X, If ZjWinj—I—bi:O,

-1, It 5 wijxj+b <O.

\

This ensures that the energyx) will never increase. It will eventually
reach a local minimum.
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Hopfield Network

Suppose we want to storgitems {x¥}1¢<p into a network with
d neurons.

We can seb; = 0 and
NN
42"

In other wordswij = (—1+ 2c)p/d, wherec is the fraction of training

items for whichxfk) = ng).

This is known as Hebbian learning, by analogy with a processa brain
where the connection strength between two neurons in@easen they
fire simultaneusly or in rapid succession.
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Hopfield Network

Once the items are stored, then for any item x(!) we have

h 1 K) (k) (] n o1 QA (1
ot - FERA A T

The last term on the right is called tleosstalkterm, representing
Interference from the other stored items. If, foriallhe crosstalk term is
smaller than 1 in absolute value (or it has the same sigq@z)e;hemq will
not change and!) will be a stable attractor.
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Hopfield Network

The number of patterngthat can be reliably stored in a Hopfield network
IS proportional to the number of neurods$n the network.

A careful mathematical analysis shows thagp il < 0.138, we can expect
the patterns to be stored and retrieved successfully.

If we try to store more patterns than these, additional, figms” stable
states may emerge.
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Generative Models

The Hopfield Network is used to store specific items and netrieem.

What if, instead, we want to generate new items, which areebom
“similar” to the stored items, but not quite the same.

This is known as generativamodel.

The first attempt to do this using neural networks was thezBwdnn
Machine.
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Boltzmann Machine (20.1)

The Boltzmann Machine uses exactly the same energy funadhe
Hopfield network:

E(x) == (3 xiwijxj+ > bix)

<]
The Boltzmann Machine is very similar to the Hopfield Netwakcept that

components (neurong) take on the values,@ instead of-1,+1
used to generate new states rather than retrieving statss st

update is not deterministic but stochastic, using the sigmo
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Boltzmann Distribution

The Boltzmann Distribution is a probability distributiomer a state space,
given by

E(X) is an energy function
T Is a temperature parameter
Z is the partition function which ensures thap(x) = 1
X
In most cases, it is too complicated to compute the partitimction

directly. But, we can sample from the distribution by anatese process
using the relative probability of neighboring states.
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Gibbs Sampling (16.3)

Consider a stat& for which a particular componemnt is equal to 1.
Suppose we change to O but leave all other components fixed, to
produce a new staté. Let AE = E(X') — E(x) be the difference in energy
between the two states. Then

/

p(X) = p(x)e”
Therefore, if all other components are fixed, the probabditx; taking
the value 1 or O must be

AE/T

p(x) 1
P(X)+p(X) 1+eBE/T
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Boltzmann Machine

The Boltzmann Machine operates similarly to a Hopfield Nekwexcept
that there is some randomness in the neuron updates.

In both cases, we repeatedly choose one neyrand decide whether or
not to “flip” the value ofx;, thus changing from stateinto X'.

For the Hopfield Network, we flip if and only AE < 0, i.e. we never
move to a higher energy state. For the Boltzmann machinenstead flip
with probability 1

P 1y et

In other words, there is some probability of moving to a higieergy
state (or remaining in a higher energy state even when a lonens
available).
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Boltzmann Machine

B 1
T 1re e

P

If this process is repeated for many iterations, we will ¢éuatty
obtain a sample from the Boltzmann distribution

whenT — oo, the value of O or 1 is always chosen with equal
probability, thus producing a uniform distribution on thate space

asT — 0, the behaviour converges to that of the Hopfield Network
(never allowing the energy to increase)

the Temperaturd may be held fixed, or it may start high and be
gradually reduced (known as Simulated Annealing)
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Boltzmann Machine Limitations

The Boltzmann Machine is limited in that the probability alcé unit must
be a linearly separable function of the surrounding untteetomes more
powerful if we make a division between “visible” untsand “hidden”

unitsh.

The visible and hidden units roughly correspond to inputladden units
in a feedforward network. The aim is that the hidden unitausthéearn
some hidden features or “latent variables” which help thstesy to model
the distribution of the inputs.
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Restricted Boltzmann Machine (16.7)

If we allow visible-to-visible and hidden-to-hidden comtiens, the
network takes too long to train. So we normally restrict thedel by
allowing only visible-to-hidden connections.

Boltzmann Restricted
Machine Boltzmann

Hidden

Visible ()

i

This is known as &estricted Boltzmann Machine
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Restricted Boltzmann Machine

Inputs are binary vectors

two-layer bi-directional neural network
visible layerv

hidden layeih
no vis-to-vis or hidden-to-hidden connections

all visible units connected to all hidden units

E(v,h) = Zb.v,%—ZthJJer.w,JhJ

trained to maximize the expected log probability of the data
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Conditional Distributions (20.2)

Because the input and hidden units are decoupled, we camatal¢he
conditional distribution oh givenv, and vice-versa.

B p(v, h) B 1
PV =00 = Py

1
= ? exp(;cjhthgviwijhj)

exp(IZbivi _I_;Cj hj _I_;ViWij hj)

N| —

It follows that
p(h|v) = [ p(hj [v) = [ o((2h— 1) © (c+WTv)).
j j
p(vIh) =[] p(vilh) =[] o((2v—1)© (b+Wh)),
I |
where® is component-wise multiplication ara(s) = 1/(1+ exp(—S)) IS
the sigmoid function.
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Alternating Gibbs Sampling

eve ege ese Y X
<Vihj>/ \ / / >® & <vihj>7 a fantasy
de e [de ge”

t=0 t=1 t=2 t = infinity

With the Restricted Boltzmann Machine, we can sample froen th
Boltzmann distribution as follows:

choosevy randomly

then sampld from p(h|vo)
then sample; from p(v|ho)
then sampld; from p(h|vy)
etc.
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Contrastive Divergence (18.2)

RBM can be trained b ontrastive Divergence

select one or more positive samplas®)} from the training data
for eachvi®), sample a hidden vectdr®) from p(h|v¥)
generate “fake” sampleg¥} by alternating Gibbs sampling
for eachvt), sample a hidden vectdf®) from p(h|¥X)

Update{b;},{c;},{wi;} toincrease log(v¥) h(K)) —log p(¥¥), h(k)

bi — bi —+ r](vi —\7i)
Cj <— ¢j + n(hj—hj)
Wij < Wij —I—I](Vi hj —\7i hj)
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Quick Contrastive Divergence

It was noticed in the early 2000’s that the process can begpédg taking
just one additional sample instead of running for many tiens.

t=0 t=1
data reconstruction

Vo, hg are used as positive sample, andh; as negative sample

this can be compared to the Negative Sampling that was ugad wi

word2vec — it is not guaranteed to approximate the true gradbut
It works well in practice
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Boltzmann Machines

Deep Boltzmann Machine (20.4)

Hidden
layer

Hidden
layer

Hidden
layer

Input

layerl=

The same approach can be applied iteratively to a multirlagévork.
The weights from the input to the first hidden layer are trdifiest.
Keeping those fixed, the weights from the first to the secodddm layer
are trained,
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and so on.

QOO00000V,

QOO00000Y,

©Alan Blair, 2017




COMP9444 17s2 Boltzmann Machines 24

Greedy Layerwise Pretraining

One application for the deep bolzmann machine is greedypamgised
layerwise pretraining.

Each pair of layers in succession is trained as an RBM.

The resulting values are then used as the initial weightd#asks for a
feedforward neural network, which is then trained by backpagation for
some other task, such as classification.

For the sigmoid or tanh activation function, this kind of fbraining leads
to a much better result than training directly by backprab@g from
random initial weights.
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