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Content Addressable Memory

Humans have the ability to retrieve something from memory when

presented with only part of it.

For example,

To be or not to be, ...

I came, I saw, ...

Can we recreate this in computers?
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Auto-Associative Memory
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Energy Based Models

We can try to define an energy functionH(x) in configuration space, in

such a way that the local minima of this energy function correspond to the

stored items.
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Hopfield Network

Consider a state space where each configuration (state) consists of a vector

x = {x j}1≤ j≤d , with eachx j = either+1 or−1

We can define an energy function as

E(x) =−(
1
2 ∑

i, j
xi wi j x j +∑

i
bi xi)

We normally assumewii = 0 for all i, andwi j = w ji for all i, j.

These look very much like the weights and biases of a neural network.

But, it differs from the feedforward networks we are used to.
� The components (neurons)xi do not vary continuously, but instead

take only the discrete values−1 and+1

� neurons are iteratively updated, either synchronously or asyn-

chronously, based on the current values of the neighboring neurons
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Hopfield Network

E(x) =−(
1
2 ∑

i, j
xi wi j x j +∑

i
bi xi)

Start with an initial statex and then repeatedly try to “flip” neuron

activations one at a time, in order to reach a lower-energy state. If we

choose to modify neuronxi, its new value should be

xi←















+1, if ∑ j wi j x j +bi > 0,

xi , if ∑ j wi j x j +bi = 0,

−1, if ∑ j wi j x j +bi < 0.

This ensures that the energyE(x) will never increase. It will eventually

reach a local minimum.
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Hopfield Network

Suppose we want to storep items {x(k)}1≤k≤p into a network with

d neurons.

We can setbi = 0 and

wi j =
1
d

p

∑
k=1

x(k)i x(k)j

In other words,wi j = (−1+2c)p/d, wherec is the fraction of training

items for whichx(k)i = x(k)j .

This is known as Hebbian learning, by analogy with a process in the brain

where the connection strength between two neurons increases when they

fire simultaneusly or in rapid succession.
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Hopfield Network

Once the items are stored, then for any itemx = x(l) we have

∑
j

wi j x(l)j =
1
d ∑

j
∑
k

x(k)i x(k)j x(l)j = x(l)i +
1
d ∑

j
∑
k 6=l

x(k)i x(k)j x(l)j

The last term on the right is called thecrosstalkterm, representing

interference from the other stored items. If, for alli, the crosstalk term is

smaller than 1 in absolute value (or it has the same sign asx(l)i ) thenxi will

not change andx(l) will be a stable attractor.
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Hopfield Network

The number of patternsp that can be reliably stored in a Hopfield network

is proportional to the number of neuronsd in the network.

A careful mathematical analysis shows that ifp/d < 0.138, we can expect

the patterns to be stored and retrieved successfully.

If we try to store more patterns than these, additional, “spurious” stable

states may emerge.

COMP9444 c©Alan Blair, 2017



COMP9444 17s2 Boltzmann Machines 10

Generative Models

The Hopfield Network is used to store specific items and retrieve them.

What if, instead, we want to generate new items, which are somehow

“similar” to the stored items, but not quite the same.

This is known as agenerativemodel.

The first attempt to do this using neural networks was the Boltzmann

Machine.
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Boltzmann Machine (20.1)

The Boltzmann Machine uses exactly the same energy functionas the

Hopfield network:

E(x) =−(∑
i< j

xi wi j x j +∑
i

bi xi)

The Boltzmann Machine is very similar to the Hopfield Network, except that

� components (neurons)xi take on the values 0,1 instead of−1,+1

� used to generate new states rather than retrieving stored states

� update is not deterministic but stochastic, using the sigmoid
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Boltzmann Distribution

The Boltzmann Distribution is a probability distribution over a state space,

given by

p(x) =
e−E(x)/T

Z

� E(x) is an energy function

� T is a temperature parameter

� Z is the partition function which ensures that∑
x

p(x) = 1

In most cases, it is too complicated to compute the partitionfunction

directly. But, we can sample from the distribution by an iterative process

using the relative probability of neighboring states.
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Gibbs Sampling (16.3)

Consider a statex for which a particular componentxi is equal to 1.

Suppose we changexi to 0 but leave all other components fixed, to

produce a new statex′. Let ∆E = E(x′)−E(x) be the difference in energy

between the two states. Then

p(x′) = p(x)e−∆E/T

Therefore, if all other components are fixed, the probability of xi taking

the value 1 or 0 must be

p(xi = 1) =
p(x)

p(x)+ p(x′)
=

1

1+ e−∆E/T

p(xi = 0) = 1− p(xi = 1) =
1

1+ e+∆E/T
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Boltzmann Machine

The Boltzmann Machine operates similarly to a Hopfield Network, except

that there is some randomness in the neuron updates.

In both cases, we repeatedly choose one neuronxi and decide whether or

not to “flip” the value ofxi, thus changing from statex into x′.

For the Hopfield Network, we flip if and only if∆E ≤ 0, i.e. we never

move to a higher energy state. For the Boltzmann machine, we instead flip
with probability

p =
1

1+ e−∆E/T

In other words, there is some probability of moving to a higher energy
state (or remaining in a higher energy state even when a lowerone is

available).

COMP9444 c©Alan Blair, 2017



COMP9444 17s2 Boltzmann Machines 15

Boltzmann Machine

p =
1

1+ e−∆E/T

� if this process is repeated for many iterations, we will eventually

obtain a sample from the Boltzmann distribution

� whenT → ∞, the value of 0 or 1 is always chosen with equal

probability, thus producing a uniform distribution on the state space

� asT → 0, the behaviour converges to that of the Hopfield Network

(never allowing the energy to increase)

� the TemperatureT may be held fixed, or it may start high and be

gradually reduced (known as Simulated Annealing)
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Boltzmann Machine Limitations

The Boltzmann Machine is limited in that the probability of each unit must

be a linearly separable function of the surrounding units. It becomes more

powerful if we make a division between “visible” unitsv and “hidden”

unitsh.

The visible and hidden units roughly correspond to input andhidden units

in a feedforward network. The aim is that the hidden units should learn

some hidden features or “latent variables” which help the system to model

the distribution of the inputs.
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Restricted Boltzmann Machine (16.7)

If we allow visible-to-visible and hidden-to-hidden connections, the
network takes too long to train. So we normally restrict the model by
allowing only visible-to-hidden connections.

This is known as aRestricted Boltzmann Machine.
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Restricted Boltzmann Machine

� inputs are binary vectors

� two-layer bi-directional neural network

◮ visible layerv

◮ hidden layerh

� no vis-to-vis or hidden-to-hidden connections

� all visible units connected to all hidden units

E(v,h) =−(∑
i

bi vi +∑
j

c j h j +∑
i, j

vi wi j h j)

� trained to maximize the expected log probability of the data
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Conditional Distributions (20.2)

Because the input and hidden units are decoupled, we can calculate the

conditional distribution ofh givenv, and vice-versa.

p(h |v) =
p(v,h)
p(v)

=
1

p(v)
1
Z

exp(∑
i

bi vi +∑
j

c j h j +∑
i, j

vi wi j h j)

=
1
Z′

exp(∑
j

c j h j +∑
i, j

vi wi j h j)

It follows that
p(h |v) = ∏

j
p(h j |v) = ∏

j
σ
(

(2h−1)⊙ (c+W Tv)
)

j

p(v |h) = ∏
i

p(vi |h) = ∏
i

σ
(

(2v−1)⊙ (b+W h)
)

i

where⊙ is component-wise multiplication andσ(s) = 1/(1+exp(−s)) is

the sigmoid function.
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Alternating Gibbs Sampling

With the Restricted Boltzmann Machine, we can sample from the

Boltzmann distribution as follows:

choosev0 randomly

then sampleh0 from p(h |v0)

then samplev1 from p(v |h0)

then sampleh1 from p(h |v1)

etc.
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Contrastive Divergence (18.2)

RBM can be trained byContrastive Divergence

� select one or more positive samples{v(k)} from the training data

� for eachv(k), sample a hidden vectorh(k) from p(h |v(k))

� generate “fake” samples{ṽ(k)} by alternating Gibbs sampling

� for each ˆv(k), sample a hidden vectorh̃(k) from p(h | ṽ(k))

� Update{bi},{c j},{wi j} to increase logp(v(k),h(k))− log p(ṽ(k), h̃(k))

bi← bi + η(vi− ṽi)

c j← c j + η(h j− h̃ j)

wi j← wi j +η(vi h j− ṽi h̃ j)
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Quick Contrastive Divergence

It was noticed in the early 2000’s that the process can be spedup by taking

just one additional sample instead of running for many iterations.

� v0,h0 are used as positive sample, andv1,h1 as negative sample

� this can be compared to the Negative Sampling that was used with

word2vec – it is not guaranteed to approximate the true gradient, but

it works well in practice
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Deep Boltzmann Machine (20.4)

The same approach can be applied iteratively to a multi-layer network.

The weights from the input to the first hidden layer are trained first.

Keeping those fixed, the weights from the first to the second hidden layer

are trained, and so on.
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Greedy Layerwise Pretraining

One application for the deep bolzmann machine is greedy unsupervised

layerwise pretraining.

Each pair of layers in succession is trained as an RBM.

The resulting values are then used as the initial weights andbiases for a

feedforward neural network, which is then trained by backpropagation for

some other task, such as classification.

For the sigmoid or tanh activation function, this kind of pre-training leads

to a much better result than training directly by backpropagation from

random initial weights.
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