COMP9444 17s2

1

3

COMP9444 Neural Networks and Deep Learning

13. Coevolution

Outline

- Evolutionary Computation Paradigms
- Deceptive Landscapes
- Punctuated Equilibria
- Coevolution in Nature
- Coevolution in Machine Learning

COMP9444 © Alan Blair, 2		© Alan Blair, 2017	COMP9444		OMP9444		©Alan Blair, 2017
COMP9444 17s2	Coevolution		2	COMP9444 17s2		Coevolution	

Evolutionary Computation

- use principles of natural selection to evolve a computational mechanism which performs well at a specified task.
- start with randomly initialized population
- repeated cycles of:
 - evaluation
 - selection
 - reproduction + mutation
- any computational paradigm can be used, with appropriately defined reproduction and mutation operators

Recall: Hill Climbing

- Initialize "champ" policy $\theta_{champ} = 0$
- for each trial, generate "mutant" policy

 $\theta_{\text{mutant}} = \theta_{\text{champ}} + \text{Gaussian noise (fixed } \sigma)$

- champ and mutant play a number of games, with same game initial conditions
- if mutant does "better" than champ,

$$\theta_{champ} \leftarrow (1 - \alpha) \theta_{champ} + \alpha \theta_{mutant}$$

We saw this algorithm applied to Backgammon, and Simulated Hockey.

COMP9444

COMP9444 17s2

Coevolution

5

Evolutionary Computation

Let's assume we have a population of 100 individuals.

At each generation, we evaluate a fitness score for each individual. In some cases, this may require tranlating from a genotype to a phenotype.

The best 50 individuals are selected, and the other 50 are "culled" or removed from the population.

Crossover and mutation operators are applied to the selected individuals, producing 50 new individuals to replace those who were culled.

We then evaluate the new population of 100 individuals, and the cycle repeats.

Evo	lutionary	Issues

- Representations
- Mutation operators
- Crossover operators
- **Fitness functions**

OMP9444	© Alan Blair, 2017		COMP9444		©Alan Blair, 2017
44 17s2 Coevolution Representations		6	COMP9444 17s2 Bit String Cre	Coevolution	
 continuous parameters (Swefel – "Evolutio Bit Strings (Holland – "Genetic Algorithm S-expression trees (Koza – "Genetic Progr Lindenmeyer system (e.g. Sims – "Evolvin 	onary Strategy") ") amming") ag Virtual Creatures")		one-point cr <u>11101</u> 0010 00001 <u>0101</u> two-point cr 11 <u>10100</u> 10 <u>00</u> 0010101 point m 111010 <u>0</u> 10	000 11101010 01 00001001 rossover: 11001011 000 11001011 01 00101000 nutation: 11101011	0101 000 000 0101 000

COMP9444

Genetic Algorithms

COMP9444 17s2

COMP9444

Coevolution

Aibo Walk Learning (Hornby)

Learning done on actual robot.

COMP9444

Coevolution

Fitness Functions

Sometimes the fitness function presents a sooth "hill" for the algorithm to climb. But, often we see "deceptive" landscapes leading to premature convergence, where the population gets stuck on a local opmimum.

- fitness sharing
- random re-starts
- age layered planes (ALPS)
- (spatial) coevolution

© Alan Blair, 2017

10

14

Guroo – Humanoid Walk Learning

Learning done in simulator(s), then tested on actual robot.

COMP9444	© Alan Blair, 2017

COMP9444 17s2

Coevolution

"Gaps" in the Fossil Record?

- Eldridge & Gould, 1970
 - ▶ partial geographic isolation
 - punctuated equilibria
- ideas for Evolutionary Computation?
 - "island" models
 - ► co-evolution / artificial ecology ?

Evolved Antenna

One example of the use of Evolutionary Algorithms for a real world application is the antenna that was evolved by Hornby et al in 2006 for NASA's Space Technology 5 (ST5) mission.

© Alan Blair, 2017

Partial Geographic Isolation

COMP9444 17s2

Coevolution

Punctuated Equilibria

Co-Evolution in Nature

- competitive (leopard vs. gazelle)
- co-operative (insects/flowers)
- mixed co-operative/competitive (Maynard-Smith)
- different genes within the same genome?
- "diffuse" co-evolution

16

17

19

Sorting Networks

16 60 modules, delay 10

Sorting Networks #1 (Hillis)

- evolving population of networks
- converged to local optimum
- final network not quite as good as hand-crafted human solution

COMP9444		© Alan Blair, 2017		COMP9444		©Alan Blair, 2017
COMP9444 17s2	Coevolution		18	COMP9444 17s2	Coevolution	

Sorting Networks #2 (Hillis)

- two co-evolving populations (networks and strings)
- can escape from local optima
- punctuated equilibria observed
- better than hand-crafted solutions (Tufts, Juillé & Pollack)

Co-evolution in Machine Learning

- machine vs. machine (Hillis)
- human vs. machine (Tron)
- mixed co-operative/competitive (IPD)
- brain / body (Sims, Lipson)
- language games (Tonkes, Ficici)
- single individual ? (Backgammon)
- Generative Adversarial Networks

20

Tron

COMP9444

COMP9444 17s2

	© Alan Blair, 2017		
Coevolution		22	CON
	Coevolution	©Alan Blair, 2017 Coevolution	© Alan Blair, 2017 Coevolution 22

Iterated Prisoner's Dilemma

	С	D
C	3,3	0,5
D	5,0	1,1

$TFT \rightarrow ALL\text{-}C \rightarrow ALL\text{-}D \rightarrow TFT$

Tron

	COMP9444		©Alan Blair, 2017
COMP	9444 17s2	Coevolution	

Evolving Virtual Creatures (Sims)

- Body evolves as a Lindenmeyer system
- Controller evolves as a neural network

COMP9444

24

Golem (Lipson)

Evolved in simulation, tested in reality.

COMP9444		© Alan Blair, 2017
P9444 17s2	Coevolution	26

Self-Play as Coevolution

HC-Gammon trained by self-play, and against fixed opponents.

COMP9444

Language Games

COMP9444		©Alan Blair, 2017
COMP9444 17s2	Coevolution	

Collusion

25

Meta-Game of Learning

- Co-evolution tends to provide an opponent of appropriate ability
- generally helps to escape from local optima
- however, can create new "mediocre stable states" (collusion)

COMP9444

© Alan Blair, 2017