
COMP9444 Neural Networks and
Deep Learning

14: Adversarial Training and GANs

Alan Blair, UNSW, 2017

, 1/46

Outline

Artist-Critic Co-Evolution

Co-Evolution Paradigms

Blind Watchmaker (GP Artist, Human Critic)

Evolutonary Art (GP Artist, GP or NN Critic)

Generative Adversarial Networks (CNN Artist, CNN Critic)

, 2/46

Artist-Critic Co-Evolution

Critic

Real Images

Generated Images

Artist

Critic is rewarded for distinguishing real images from those
generated by the artist.

Artist is rewarded for fooling the critic into thinking that
generated images are real.

, 3/46

Co-Evolution Paradigms

Artist Critic Method Reference

Biomorph Human Blind Watchmaker (Dawkins, 1986)
GP Human Blind Watchmaker (Sims, 1991)

CPPN Human PicBreeder (Secretan, 2011)
CA Human EvoEco (Kowaliw, 2012)

GP SOM Artificial Creativity (Saunders, 2001)
Photo NN Computational Aesthetics (Datta, 2006)

GP NN Computational Aesthetics (Machado, 2008)
Agents NN Evolutionary Art (Greenfield, 2009)

GP NN Aesthetic Learning (Li & Hu, 2010)

HERCL HERCL Co-Evolving Line Drawings (Vickers, 2017)
HERCL DCNN HERCL Function/CNN (Soderlund)

DCNN DCNN Generative Adversarial Nets (Goodfellow, 2014)
DCNN DCNN Plug & Play Generative Nets (Nguyen, 2016)

, 4/46

Blind Watchmaker (Dawkins, 1986)

the User is presented with 15 images

the chosen individual is used to breed the next generation

, 5/46

Blind Watchmaker Biomorphs

, 6/46

Blind Watchmaker (Sims, 1991)

Artist = Genetic Program (GP)

used as function to compute R,G,B values for each pixel x , y

Critic = Human

, 7/46

PicBreeder Examples

, 8/46

PicBreeder (Secretan, 2011)

Artist = Convolutional Pattern Producing Neural Network
(CPPN)

Critic = Human

interactive Web site (picbreeder.org) where you can
choose existing individual and use it for further breeding

Blind Watchmaker paradigm is cool, but it may require a lot
of work from the Human

Can the Human be replaced by an automated Critic?

, 9/46

Evolutionary Art

Artist = Genetic Program (GP or HERCL)

artist used as a function to compute R,G,B values for each
pixel location x , y
alternatively, artist issues a series of drawing instructions

Critic = GP (evolution) or Neural Network (backpropagation)

Critic is presented with “real” images from a training set,
and “fake” images generated by the Artist

Critic is trained to produce output close to 1 for real images
and close to 0 for generated images (or vice-versa)

inputs to Critic

small number of statistical features extracted from the image
more recently, raw image, fed to DCNN

, 10/46

Statistical Image Features

Feature Abbreviation Source

Mean MH,MS,MV D, M

Standard deviation SH , SS , SV D, M

Greyscale entropy H M

Mean edge weight ME M

Standard deviation of edge weight SE M

Number of homogenous patches NP D

Mean of largest patch PH
1 , PS

1 , PV
1 D

Mean of 2nd-largest patch PH
2 , PS

2 , PV
2 D

Mean of 3rd-largest patch PH
3 , PS

3 , PV
3 D

Mean of 4th-largest patch PH
4 , PS

4 , PV
4 D

Mean of 5th-largest patch PH
5 , PS

5 , PV
5 D

[D = Datta et al., 2006] [M = Machado et al., 2008]

, 11/46

Image Features

Feature Abbreviation Source

Size of largest patch A1 D

Size of 2nd-largest patch A2 D

Size of 3rd-largest patch A3 D

Size of 4th-largest patch A4 D

Size of 5th-largest patch A5 D

Convexity factor C D

Mean corner weight MC -

Number of corners NC -

[D = Datta et al., 2006] [M = Machado et al., 2008]

, 12/46

Hierarchical Evolutionary Re-Combination Language (HERCL)

input: ickey

output:
memory: Minnie..............................

registers:[6]..[1]. [7]

stack: MM

code: 0[is|.<sŷ 5>};i|8{ ŝ-~:+7=;wo8|-wo]

ˆ

combines elements from Linear GP and Stack-based GP.

programs have access to a stack, registers and memory.

each instruction is a single character, possibly preceded by a
numerical (or dot) argument.

, 13/46

HERCL Commands

Input and Output

i fetch input to input buffer
s scan item from input buffer to stack
w write item from stack to output buffer
o flush output buffer

Stack Manipulation and Arithmetic

push new item to stack 7→ x
! pop top item from stack x 7→
c copy top item on stack x 7→ x , x
x swap top two items ... y , x 7→ ... x , y
y rotate top three items z , y , x 7→ x , z , y
- negate top item x 7→(−x)
+ add top two items ... y , x 7→ ...(y+x)
* multiply top two items ... y , x 7→ ...(y ∗ x)

, 14/46

HERCL Commands

Mathematical Functions

r reciprocal .. x → .. 1/x
q square root .. x → ..

√
x

e exponential .. x 7→ .. ex

n (natural) logarithm .. x 7→ .. loge(x)
a arcsine .. x 7→ .. sin−1(x)
h tanh .. x 7→ .. tanh(x)
z round to nearest integer
? push random value to stack

Double-Item Functions

% divide/modulo .. y , x 7→ .. (y/x), (y mod x)
t trig functions .. θ, r 7→ .. r sin θ, r cos θ

p polar coords .. y , x 7→ .. atan2(y ,x),
√
x2+y2

, 15/46

HERCL Commands

Registers and Memory

< get value from register
> put value into register
ˆ increment register
v decrement register
{ load from memory location
} store to memory location

Jump, Test, Branch and Logic

j jump to specified cell (subroutine)
| bar line (return on .| halt on 8|)
= register is equal to top of stack
g register is greater than top of stack
: if true, branch forward
; if true, branch back
& logical and / logical or ~ logical not

, 16/46

Hierarchical Evolutionary Re-Combination

library

champ

POINT

BAR

BRANCH

CELL

codebank

CELL

BAR

POINT

ladder

large crossover/mutation can be followed up by smaller ones.

if top agent becomes fitter, it moves down to replace the one
below it (which is moved to the codebank).

if top agent exceeds max number of offspring, it is removed.

good for co-evolution because it keeps the number of
competing agents small while preserving diversity.

, 17/46

Line Drawing Commands

0 toggle lift pen on/off page
1 move x move pen forward by x pixels (0 ≤ x ≤ 15)
2 turn x turn x degrees clockwise
3 size p set pen radius to p pixels (1 ≤ p ≤ 4)

4
colour v set greyscale value [greyscale mode]
colour l h s set colour in HSV colour space [colour mode]

the output from the HERCL program is interpreted as a series
of line drawing commands

, 18/46

Experimental Details

10 artists and 3 critics per iteration (evolved independently)

features are extracted from the image and fed to the critic

target value is 1 for real images and 0 for generated images

cost for the critic is cross-entropy error

critic is successful when cost < 0.1 per image

successful artist code from previous generations goes to library

cost for artist is weighted sum of critics from all previous
generations, with older critics weighted less

artist is successful when cost < 0.1

“real” images obtained from Google search for “Circle”

, 19/46

Evolved Images (Generation 3,5,7,8,9)

, 20/46

Evolved Images (Generation 11,13,15,17,18)

, 21/46

Evolved Artist Code

[1.165#w8.#ewo7.#.vw1.#<.6#-g!/:w2.#.gaw17#.|ww9.#

0vw8.#g21.#w15.#o<ww8vo<v0<a15.#aw17#ww.vo<<v7<+w;]

[5̂ ˆˆ<w3=!/:.>g:w:|5̂ ˆˆ<w<ocŵ wo9̂ .g<w<w;]

[̂ p<+wc<w<o11.#-w<wopc+w5.#-8.#wc<o2.#-w<ow;]

[gv<7g:~1.#-2.#%w<<ŵ oŵ <̂ w.̂ 7.#~.#2.#%yw<ŵ oŵ <̂ w

4̂ o<6v;w8.#w7.#|ww<ww<ow<7g6.#-o!w15.#vwo<-w;:]

[x9.#-1.#-|ww9.#0vw8.#g21.#w15.#o<ww8vo<v0<a15.#

aw17#ww.vo<<v7<+w;]

[<v<wg<wo.#w15.#vww<w7v<%<7g6.#-o!w15.#vwo<-w;o]

[ww9.#0vw8.#g21.#w15.#o<ww8vo<v0<a15.#aw17#ww.vo<<v7<+w;]

[5̂ ˆˆ2<w<ocŵ wo9̂ <w<w;gw5.#-7.#w]

[<c<wvwo<-<wcw<o10.#-p7.#eww<w&p+w9};]
[3.#a1̂ 6<woww.<!oŵ 11.#-9=g~<7=iw{̂ <ccwa1̂ <ww7<!w

ˆ<c<w0<!owŵ &c</̂ <̂ w15.#;]

, 22/46

Image Features most used by Critics

No Loops

H PV
5 PV

2
SE MV PV

3 PV
4 SV A2 ME

5
10
15
20 18

13
9 7 7 6 6 6 5 4

o
cc

u
rr

en
ce

s

Loops

H PV
2

SE A2 PV
3 SV MV PV

4
C PV

1

10
15
20
25

27
22 20

17
14 14 13 12 12 11

o
cc

u
rr

en
ce

s

Colour

H SV MC SH PH
3 PH

1
A2 PS

1
ME MH

5
10
15

17
14 13

5 5 5 5 4 4 4

o
cc

u
rr

en
ce

s

, 23/46

Evolved Critic Code

[29<5g:wo8|1<6=hg~<:r1:|cttt>88.#-.164#g~!:<31<+a%|awo]

[6<qaawo]

[6<.168#4>g-1:q5g~:31<6<!z<+-p1g:<|c=!:2}
!1{h2g~q:31<|yywo]

[6<0g:ewo.|31<%q21g~:8<25gr:-|5<x4g~:n|a+awo]

[8<18g~:22<qqazwo8|4<7g:8<|31<}%{t+a++1{+wo]
[1<h6g13<+:5<t31<a+wo.|ewo]

[20<19<>g2=/:q<+qzwo.|.56#-23<+<+31<29gx:6<+

r+wo.|6<+22<+pwo]

[1g:{wo8|<6<xhg%:26<6<az21g:-wo.|++15<pwo]
[6<nr<aa>z<1ga%~:<zx31g:{26<|pwo]
[6<aa1g~:31<5<19gx:xa12g:zwo.|1g=/~:qn|zewo]

, 24/46

Image Generating Paradigms

Biomorph GP Picbreeder CA

HERCL(draw) HERCL(func) HERCL(func) GAN

, 25/46

Generative Adversarial Networks

Generator (Artist) Gθ and Discriminator (Critic) Dψ are both
Deep Convolutional Neural Networks.

Generator Gθ : z 7→ x , with parameters θ, generates an image x
from latent variables z (sampled from a Normal distribution).

Discriminator Dψ : x 7→ Dψ(x) ∈ (0, 1), with parameters ψ, takes
an image x and estimates the probability of the image being real.

Generator and Discriminator play a 2-player zero-sum game to
compute:

min
θ

max
ψ

(
Ex∼pdata

[
logDψ(x)

]
+ Ez∼pmodel

[
log
(
1− Dψ(Gθ(z))

)])
Discriminator tries to maximize the bracketed expression,
Generator tries to minimize it.

, 26/46

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

max
ψ

(
Ex∼pdata

[
logDψ(x)

]
+ Ez∼pmodel

[
log
(
1− Dψ(Gθ(z))

)])
Gradient descent on Generator, using:

min
θ

Ez∼pmodel

[
log
(
1− Dψ(Gθ(z))

)]

, 27/46

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

max
ψ

(
Ex∼pdata

[
logDψ(x)

]
+ Ez∼pmodel

[
log
(
1− Dψ(Gθ(z))

)])
Gradient descent on Generator, using:

min
θ

Ez∼pmodel

[
log
(
1− Dψ(Gθ(z))

)]
This formula puts too much emphasis on images that are correctly
classified. Better to do gradient ascent on Generator, using:

max
θ

Ez∼pmodel

[
log
(
Dψ(Gθ(z))

)]
This puts more emphasis on the images that are wrongly classified.

, 28/46

Generative Adversarial Networks

GAN’s differ from previous approaches (Evolutionary Art) in that:

there is no need for a population; one network produces the
full range of images x , with different values for the latent
variables z

differentials are backpropagated through the Discriminator
network and into the Generator network

the images produced are much more realistic!

, 29/46

Generative Adversarial Networks

repeat:

for k steps do

sample minibatch of m latent samples {z (1), . . . , z (m)} from p(z)

sample minibatch of m training items {x (1), . . . , x (m)}
update Discriminator by gradient ascent on ψ:

∇ψ
1

m

m∑
i=1

[
logDψ(x (i)) + log

(
1− Dψ(Gθ(z (i)))

)]
end for

sample minibatch of m latent samples {z (1), . . . , z (m)} from p(z)

update Generator by gradient ascent on θ:

∇θ
1

m

m∑
i=1

log
(
Dψ(Gθ(z (i)))

)
end repeat

, 30/46

GAN Convolutional Architectures

normalize images to between −1 and +1

replace pooling layers with:

strided convolutions (Discriminator)
fractional-strided convolutions (Generator)

use BatchNorm in both Generator and Discriminator

remove fully connected hidden layers for deeper architectures

use tanh at output layer of Generator,
ReLU activation in all other layers

use LeakyReLU activation for all layers of Discriminator

, 31/46

Generator Architecture

Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks (Radford et al., 2016)

, 32/46

GAN Generated Images

, 33/46

GAN Image Vector Arithmetic

, 34/46

GAN Image Vector Arithmetic

, 35/46

Mediocre Stable States

Like any coevolution, GANs can sometimes oscillate or get
stuck in a mediocre stable state.

oscillation: GAN trains for a long time, generating a variety
of images, but quality fails to improve (compare IPD)

mode collapse: Generator produces only a small subset of
the desired range of images, or converges to a single image
(with minor variations)

Methods for avoiding mode collapse:

Conditioning Augmentation

Minibatch Features (Fitness Sharing)

Unrolled GANs

, 36/46

The GAN Zoo

Contex-Encoder for Image Inpainting

Texture Synthesis with Patch-based GAN

Conditional GAN

Text-to-Image Synthesis

StackGAN

Patch-based Discriminator

S2-GAN

Style-GAN

Plug-and-Play Generative Networks

, 37/46

GAN References

http://dl.ee.cuhk.edu.hk/slides/gan.pdf

cs231n.stanford.edu/slides/2017/cs231n 2017 lecture13.pdf

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf

https://arxiv.org/abs/1612.00005

, 38/46

HERCL Artist, CNN Critic

Artist = HERCL program, used as function to produce R,G,B
values from pixel location x , y

Critic = Deep CNN (LeNet or simplified AllConv Network)

Alternate between evolution of Artist and gradient descent for
Critic

Artist evolved to fool current Critic

Critic trained by backpropagation to distinguish real images
from those produced by all previous Artists

, 39/46

Images trained against MNIST

, 40/46

Images trained against MNIST

, 41/46

Images trained against CIFAR-10 Boats

, 42/46

Coevolutionary Dynamics

, 43/46

Self-Similarity, Low Complexity Art

, 44/46

Self-Similarity

, 45/46

Questions

Questions ?

, 46/46

