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@ The Principle of Inclusion-Exclusion
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... for 3 sets

JAUBUC| =
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... for 3 sets

JAUBUC| =|A| +|B| +|C|
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... for 3 sets

|JAUBUC|=|A|+|B|+|C|—]ANB|—-|ANC|—|BNC|

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2017



... for 3 sets

[AUBUC|=|A|+|B|+|C]—|AnB|—|AnC|—|BNC|+|AnBNC|
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... for 3 sets

[AUBUC|=|A|+|B|+|C]—|AnB|—|AnC|—|BNC|+|AnBNC|
AuBUC|= Y (71)‘X|+1-‘ﬂX}

XC{A,B,C}

A C
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... Intersection version

IANBNC| =
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... Intersection version

IANBNC| = |U|

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2017 5/



... Intersection version

IANBNC| = U] - [A] - [B] - [C
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... Intersection version

|[ANBNC|=|U|-|A—|B|-|C|+|[AnB|+|AnC|+|BnC]
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... Intersection version

|[ANBNC|=|U|—|A|—|B|=|C|+|[ANB|+|AnC|+|BNnC|-|ANBNC|
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... Intersection version

|[ANBNC|=|U|—|A|—|B|=|C|+|[ANB|+|AnC|+|BNnC|-|ANBNC|
AnBnCl= Y (—pl. (ﬂf‘

XC{A,B,C}
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Inclusion-Exclusion Principle — intersection version

Theorem 1 (IE-theorem — intersection version)
Let U = Aq be a finite set, and let Aq,..., A C U.

ﬂ A= Z (-

ie{l,....k} JC{1,....k}

ﬂzia

iceJ

where A; = U \ A; and ;¢ =
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Inclusion-Exclusion Principle — intersection version

Theorem 1 (IE-theorem — intersection version)
Let U = Aq be a finite set, and let Aq,..., A C U.

9

ﬂ A= Z (-

ie{l,....k} JC{1,....k}

N«

iceJ

where A; = U\ A; and (;cy = U.

Proof sketch.
® An element e € (;.(;

© Anelement e ¢ [,y 4y Ai is counted on the right for all J C I, where [
is the set of indices i such that e ¢ A;.

e counted negatively for each odd-sized .J C I, and positively for each even-sized
JCI
@ a non-empty set has as many even-sized subsets as odd-sized subsets

| \

It A; is counted on the right only for J = 0.

focog
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© Counting Hamiltonian Cycles
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Walks and cycles

o A walk of length k in a graph G = (V, E)) (short, a k-walk) is a sequence of
vertices vg, v1, . .., vy such that v;v;41 € E for each i € {0,...,k—1}.

(a,d,c,b,d,e)
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Walks and cycles

o A walk of length k in a graph G = (V, E)) (short, a k-walk) is a sequence of

vertices vg, v1, . .., vy such that v;v;41 € E for each i € {0,...,k—1}.
o A walk (vg,v1,...,v;) is closed if vy = vy.
e
¢ d (a,d,c,b,d,e,c,a)
a b
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Walks and cycles

o A walk of length k in a graph G = (V, E)) (short, a k-walk) is a sequence of
vertices vg, v1, . .., vy such that v;v;41 € E for each i € {0,...,k—1}.

o A walk (vg,v1,...,v;) is closed if vy = vy.

@ A cycle is a 2-regular subgraph of G.

(a7 d7 C? b7 a)
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Walks and cycles

o A walk of length k in a graph G = (V, E)) (short, a k-walk) is a sequence of
vertices vg, v1, . .., vy such that v;v;41 € E for each i € {0,...,k—1}.

o A walk (vg,v1,...,v;) is closed if vy = vy.
@ A cycle is a 2-regular subgraph of G.
@ A Hamiltonian cycle of G is a cycle of length n = |V|.

(&

S. Gaspers (UNSW) Inclusion-Exclusion Semester 2, 2017



#HAMILTONIAN-CYCLES

#HAMILTONIAN-CYCLES
Input: A graph G = (V, E)
Output:  The number of Hamiltonian cycles of GG

This graph has 2 Hamiltonian cycles.
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IE for #HAMILTONIAN-CYCLES

U: the set of closed n-walks starting at vertex 1
A, C U: walks in U that visit vertex v € V'

Ay

To use the |E-theorem, we need to compute |, . A,
from U in the graph G — S.

® = number of Hamiltonian cycles is | [, .y,
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A simpler problem

#CLOSED n-WALKS

Input: An integer n, and a graph G = (V, E) on < n vertices
Output:  The number of closed n-walks in G starting at vertex 1
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A simpler problem

#CLOSED n-WALKS

Input:
Output:

An integer n, and a graph G = (V, E) on < n vertices
The number of closed n-walks in G starting at vertex 1

Dynamic programming

o T'[d,v]: number of d-walks starting at vertex 1 and ending at vertex v

Base cases: T'[0,1] = 1 and T'[0,v] = 0 for all v € V' \ {1}

DP recurrence: T'[d,v] =

uwveE

Tid—1,u]

Table 7' is filled by increasing d

Return T[n, 1] in O(n?) time

S. Gaspers (UNSW)
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Wrapping up

@ Recall:
U: set of closed n-walks starting at vertex 1
A, set of closed n-walks that start at vertex 1 and visit vertex v

@ By the IE-theorem, the number of Hamiltonian cycles is

m Av = Z(_1)|S| ﬂ Tv

veV SCV veES

Semester 2, 2017
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Wrapping up

@ Recall:
U: set of closed n-walks starting at vertex 1
A, set of closed n-walks that start at vertex 1 and visit vertex v

@ By the IE-theorem, the number of Hamiltonian cycles is

m Av = Z(_1)|S| ﬂ Tv

veV SCV veES

@ We have seen that |(, .4 4,| can be computed in O(n?) time.
@ S0, > gy (—1)171|M,c5 Au| can be evaluated in O(2"n*) time
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Wrapping up

@ Recall:
U: set of closed n-walks starting at vertex 1
A, set of closed n-walks that start at vertex 1 and visit vertex v

@ By the IE-theorem, the number of Hamiltonian cycles is

m Ay = Z(_1)|S| m Tv

veV SCV veES

@ We have seen that |0, A, | can be computed in O(n?) time.
@ S0, > gy (—1)171|M,c5 Au| can be evaluated in O(2"n*) time

#HAMILTONIAN-CYCLES can be solved in O(2"n?) time and polynomial space,
where n = |V|.
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© Coloring
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COLORING

A k-coloring of a graph G = (V, E) is a function f: V — {1,2,...,k} assigning
colors to V' such that no two adjacent vertices receive the same color.

COLORING
Input: Graph G, integer k
Question:  Does G have a k-coloring?

a b
o\
f g

h
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COLORING

A k-coloring of a graph G = (V, E) is a function f: V — {1,2,...,k} assigning
colors to V' such that no two adjacent vertices receive the same color.

COLORING
Input: Graph G, integer k
Question:  Does G have a k-coloring?

@ Suppose A is an algorithm solving COLORING in O(f(n)) time, n = |V],
where [ is non-decreasing.

@ Design a O*(f(n)) time algorithm B, which, for an input graph G, finds a
coloring of G with a minimum number of colors.
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|E formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring
-~
G has independent sets [, ..., I} such that Ule L, =V.
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|E formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring
-~
G has independent sets [, ..., I} such that Ule L, =V.

o U: set of tuples (I1,...,1)), where each I;, i € {1,...,k}, is an independent
set
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|E formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring
-~
G has independent sets [, ..., I} such that Ule L, =V.

o U: set of tuples (I1,...,1)), where each I;, i € {1,...,k}, is an independent
set

e A, = {(117 C 7I]¢) celU :ve Uie{l,...,k} L}
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|E formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring
-~
G has independent sets [, ..., I} such that Ule L, =V.

o U: set of tuples (I,...,I;), where each I;, i € {1,...,k}, is an independent
set

o A, ={(I1,....Ix) €U : v e U,I.E{ka} I}

e Note: |,y Au| #0 < G has a k-coloring

Semester 2, 2017 15 / 28
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|E formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring
-~
G has independent sets [, ..., I} such that Ule L, =V.

o U: set of tuples (I1,...,1)), where each I;, i € {1,...,k}, is an independent
set

A,U:{(Ih...,Ik) ceU: veUiE{l,...,k} L}
Note: |(,cy Au| # 0 < G has a k-coloring
To use the IE-theorem, we need to compute

N

veS

:‘{(Il,...,lk)EU : Il,,lkgV\SH
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|E formulation

Observation: partitioning vs. covering

G = (V, E) has a k-coloring
-~
G has independent sets [, ..., I} such that Ule L, =V.

o U: set of tuples (I1,...,1)), where each I;, i € {1,...,k}, is an independent
set

A,U:{(Ih...,Ik) ceU: veUiE{l,...,k} L}
Note: |(,cy Au| # 0 < G has a k-coloring
To use the IE-theorem, we need to compute

N

veS

:‘{(Il,...,lk)EU : Il,,lkgV\SH

=s(V\S)",

where s(X) is the number of independent sets in G[X]
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A simpler problem

#IS oF INDUCED SUBGRAPHS
Input: A graph G = (V, E)
Output:  s(X), the number of independent sets of G[X], for each X C V
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A simpler problem

#IS oF INDUCED SUBGRAPHS
Input: A graph G = (V,E)

Output:  s(X), the number of independent sets of G[X], for each X C V

Dynamic Programming

@ s(X): the number of independent sets of G[X]

@ Base case: s()) =1

@ DP recurrence: s(X) = s(X \ Ng[v]) + s(X \ {v}), where v € X

@ Table s filled by increasing cardinalities of X
@ Output s(X) for each X C V in time O*(2")

S. Gaspers (UNSW)
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Wrapping up

Now, evaluate

> (-1

SCV

N4

vES

=D (=)Fls(V\ 9)F,

SCV

in O*(2") time.
G has a k-coloring iff |ﬂuev Av| > 0.

COLORING can be solved in O*(2") time (and space).

Corollary 4

For a given graph GG, a coloring with a minimum number of colors can be found in
O*(2™) time (and space).
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... polynomial space

Using an algorithm by [Gaspers, Lee, 2017], counting all independent sets in a
graph on n vertices in O(1.2355™) time, we obtain a polynomial-space algorithm
for COLORING with running time

3 o(1.2355m 150 = S (")0(1.2377"'5) = 0(2.2355™).
Scv s=o \*
Here, we used the Binomial Theorem: (z +y)” = > ()" Fyk.

COLORING can be solved in O(2.2355™) time and polynomial space.
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@ Counting Set Covers
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Counting Set Covers

#SET COVERS

Input: A finite ground set V' of elements, a collection H of subsets of V,
and an integer k
Output:  The number of ways to choose a k-tuple of sets (Si,...,Sk) with

S; € H,ie{l,...,k}, such that Ulesi:V.

e

This instance has 1 - 3! = 6 covers with 3 sets and 3 - 4! = 72 covers with 4 sets.

We consider, more generally, that H is given only implicitly, but can be
enumerated in O*(2") time and space.
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Algorithm for Counting Set Covers

o U: set of k-tuples (S,...,S5;), where S; € H, i e {1,...,k},
@ Av = {(Sla . '7Sk7) eU:ve Uie{l,___7k} Sz}y
@ the number of covers with k sets is

Nal- XN

veV SCV veS

= Z DISIs(V\ $)F,

where s(X) is the number of sets in H that are subsets of X.

Semester 2, 2017 21 /28
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Compute

For each X C V, compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

o Arbitrarily order V' = {vy,va, ..., 0, }
o g[X,i) = [{S € H : (X N {ui,...,va}) C S C X}
e Note: g[X,n+ 1] = s(X)

1 fXeH

@ Base case: ¢g[X, 1] = {0 otherwise

g[X,Lfl] if’Ui_l ¢X

@ DP recurrence: g|X,i| =
glX. ] {Q[X \{vi—1},a— 1]+ g[X,i — 1] otherwise.

@ Table filled by increasing 7
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For each X C V, compute s(X), the number of sets in H that are subsets of X.

Dynamic Programming

o Arbitrarily order V' = {vy,va, ..., 0, }

0 g X,i|={SeH:(XN{v,...,v,}) CSC X}
e Note: g[X,n+ 1] = s(X)

1 fXeH

0 otherwise.

@ Base case: g[X, 1] = {

g[X,Lfl] IfUZ,1 ¢X

@ DP recurrence: g[X,i] =
91X, {g[X\{vil},i—l]—s-g[X.,z'—l] otherwise.

@ Table filled by increasing 7

Theorem 6
#SET COVERS can be solved in O*(2™) time and space, where n = |V|.
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© Counting Set Partitions
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Counting Set Partitions

#ORDERED SET PARTITIONS

Input: A finite ground set V' of elements, a collection H of subsets of V/,
and an integer k

Output:  The number of ways to choose a k-tuple of pairwise disjoint sets
(S1,...,8,) with S; € H, i € {1,...,k}, such that (JF_, S; = V.
(Now, S; NS; =0, if i # j.)

This instance has 1 - 3! = 6 ordered partitions with 3 sets.
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Algorithm

Using a similar approach:

#ORDERED SET PARTITIONS can be solved in O*(2"™) time and space.
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Algorithm

Using a similar approach:

#ORDERED SET PARTITIONS can be solved in O*(2"™) time and space.

Corollary 8

There is an algorithm computing the number of k-colorings of an input graph on
n vertices in O*(2") time and space.

Semester 2, 2017 25 /28
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Covering and partitioning in polynomial space

The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V, H) can be computed in polynomial space and
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Covering and partitioning in polynomial space

The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V, H) can be computed in polynomial space and

Q@ O*(2"|H|) time, assuming that H can be enumerated in O*(|H|) time and
polynomial space
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Covering and partitioning in polynomial space

The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V, H) can be computed in polynomial space and

Q@ O*(2"|H|) time, assuming that H can be enumerated in O*(|H|) time and
polynomial space

@ O*(3™) time, assuming membership in H can be decided in polynomial time,
and
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Covering and partitioning in polynomial space

The number of covers with k sets and the number of ordered partitions with k
sets of a set system (V, H) can be computed in polynomial space and

Q@ O*(2"|H|) time, assuming that H can be enumerated in O*(|H|) time and
polynomial space

@ O*(3™) time, assuming membership in H can be decided in polynomial time,
and

(5] Z?:O (?) Ty (j) time, assuming there is a Ty (j) time and polynomial space
algorithm to count for any W C V with |W| = j the number of sets S € H
satisfying SN W = ().
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@ Further Reading
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o Chapter 4, Inclusion-Exclusion in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.

@ Thore Husfeldt. Invitation to Algorithmic Uses of Inclusion-Exclusion.

Proceedings of the 38th International Colloquium on Automata, Languages
and Programming (ICALP 2011): 42-59, 2011.

Advanced Reading

o Chapter 7, Subset Convolution in
Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer,
2010.
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