7. Parameterized intractability: the W-hierarchy

COMP6741: Parameterized and Exact Computation

Shenwei Huang'

!School of Computer Science and Engineering, UNSW Sydney, Australia

Semester 2, 2017

S. Huang (UNSW) Semester 2, 2017

1

/ 35

© Reminder: Polynomial Time Reductions and NP-completeness

© Parameterized Complexity Theory
@ Parameterized reductions
@ Parameterized complexity classes

© Case studies

@ Further Reading

S. Huang (UNSW) Semester 2, 2017 2/35

Outline

© Reminder: Polynomial Time Reductions and NP-completeness

S. Huang (UNSW) Semester 2, 2017 3/35

Polynomial-time reduction

Definition 1

A polynomial-time reduction from a decision problem II; to a decision problem II,
is a polynomial-time algorithm, which, for any instance of II; produces an
equivalent instance of II5.

If there exists a polynomial-time reduction from II; to II,, we say that II; is
polynomial-time reducible to II5 and write IT; <p II.

Important: <p is transitive.

S. Huang (UNSW) Semester 2, 2017 4 /35

New polynomial-time algorithms via reductions

If 111, 115 are decision problems such that 11, <p II, then
I, € P implies 11, € P.

S. Huang (UNSW) Semester 2, 2017 5/35

A brief history

P vs. NP problem
P #£ NP?

S. Huang (UNSW) Semester 2, 2017 6 /35

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

A brief history

P vs. NP problem
P #£ NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

S. Huang (UNSW) Semester 2, 2017 6 /35

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

A brief history

P vs. NP problem
P £ NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

The hardest problem in NP
SATISFIABILITY is ‘the’ hardest problem in NP.

Stephen Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann.
ACM symp. on Theory of Computing. 151-158 (1971).

S. Huang (UNSW) Semester 2, 2017 6 /35

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

A brief history

P vs. NP problem

P £ NP?

One of the seven famous Millennium Prize Problems stated by the Clay
Mathematics Institute in 2000.

The hardest problem in NP
SATISFIABILITY is ‘the’ hardest problem in NP.

Stephen Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann.
ACM symp. on Theory of Computing. 151-158 (1971).

21 more hardest problems

3-SAT, 3-COLORING, INDEPENDENT SET, VERTEX COVER, ...

Richard Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations The IBM Research Symposia Series. 85-103 (1972).

S. Huang (UNSW) Semester 2, 2017 6 /35

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

NP-completeness

Definition 3 (NP—hard)
A decision problem II is NP-hard if II" <p II for every II' € NP.

Definition 4 (NP-complete)
A decision problem II is NP-complete (in NPC) if
Q@ II € NP, and

Q II is NP-hard.

S. Huang (UNSW) Semester 2, 2017 7/35

Proving NP-completeness

If 11 is a decision problem such that 11" <p II for some NP-hard decision problem
II’, then II is NP-hard.
If, in addition, 1T € NP, then IT € NPC.

S. Huang (UNSW) Semester 2, 2017 8 /35

Proving NP-completeness Il

Method to prove that a decision problem II is NP-complete:
© Prove II € NP
@ Prove II is NP-hard.

o Select a known NP-hard decision problem II'.

o Describe an algorithm that transforms every instance I of II' to an instance
r(I) of II.

o Prove that for each instance I of II', we have that [is a YEs-instance of II’
< r(I) is a YEs-instance of II.

e Show that the algorithm runs in polynomial time.

S. Huang (UNSW) Semester 2, 2017 9/35

Outline

© Parameterized Complexity Theory
@ Parameterized reductions
@ Parameterized complexity classes

S. Huang (UNSW)

Semester 2, 2017

10 / 35

Main Parameterized Complexity Classes

n: instance size

k: parameter

P: class of problems that can be solved in 9" time

FPT: class of parameterized problems that can be solved in f(k)-n°™") time

WI[-]: parameterized intractability classes

XP: class of parameterized problems that can be solved in f(k) - n9%) time
(“polynomial when k is a constant”)

P CFPT CW[1] CW[2]--- C W[P] C XP

Note: We assume that f is computable and non-decreasing.

S. Huang (UNSW) Semester 2, 2017 11 / 35

Polynomial-time reductions for parameterized problems?

A vertex cover in a graph G = (V, E) is a subset of vertices S C V such that
every edge of G has an endpoint in S.

VERTEX COVER

[nput: Graph G, integer k
Parameter: k
Question: Does G have a vertex cover of size k?

An independent set in a graph G = (V, E) is a subset of vertices S C V' such that
there is no edge uv € E with u,v € S.

INDEPENDENT SET
[nput: Graph G, integer k
Parameter: k&
Question: Does G have an independent set of size k7

S. Huang (UNSW) Semester 2, 2017

Polynomial-time reductions for parameterized problems?

A vertex cover in a graph G = (V, E) is a subset of vertices S C V such that
every edge of G has an endpoint in S.

VERTEX COVER
[nput: Graph G, integer k
Parameter: k&
Question: Does G have a vertex cover of size k?

An independent set in a graph G = (V, E) is a subset of vertices S C V' such that
there is no edge uv € E with u,v € S.

INDEPENDENT SET
[nput: Graph G, integer k
Parameter: k&
Question: Does G have an independent set of size k7

@ We know: INDEPENDENT SET <p VERTEX COVER
@ However: VERTEX COVER € FPT but INDEPENDENT SET is not known to
be in FPT

Semester 2, 2017

S. Huang (UNSW)

We will need another type of reductions

@ Issue with polynomial-time reductions: parameter can change arbitrarily.

S. Huang (UNSW) Semester 2, 2017 13 / 35

We will need another type of reductions

@ Issue with polynomial-time reductions: parameter can change arbitrarily.

@ We will want the reduction to produce an instance where the parameter is
bounded by a function of the parameter of the original instance.

S. Huang (UNSW) Semester 2, 2017 13 / 35

We will need another type of reductions

@ Issue with polynomial-time reductions: parameter can change arbitrarily.

@ We will want the reduction to produce an instance where the parameter is
bounded by a function of the parameter of the original instance.

@ Also: we can allow the reduction to take FPT time instead of only
polynomial time.

S. Huang (UNSW) Semester 2, 2017 13 / 35

Outline

© Parameterized Complexity Theory
@ Parameterized reductions

S. Huang (UNSW) Semester 2, 2017 14 / 35

Parameterized reduction

Definition 6

A parameterized reduction from a parameterized decision problem II; to a
parameterized decision problem II; is an algorithm, which, for any instance I of
IT; with parameter k produces an instance I’ of II; with parameter k’ such that

o [is a YES-instance for II; < I’ is a YES-instance for Il,
@ there exists a computable function g such that &’ < g(k), and

@ there exists a computable function f such that the running time of the
algorithm is f(k) - |I|°V).

If there exists a parameterized reduction from II; to I, we write IT; <gpt Il5.

v

Note: We can assume that f and g are non-decreasing.

S. Huang (UNSW) Semester 2, 2017 15 /35

New FPT algorithms via reductions

If 11, 115 are parameterized decision problems such that 11, <gpt Il5, then
I, € FPT implies 11y € FPT.

Proof sketch.

To obtain an FPTalgorithm for I, perform the reduction and then use an
FPTalgorithm for IT; on the resulting instance. O

S. Huang (UNSW) Semester 2, 2017 16 / 35

Outline

© Parameterized Complexity Theory

@ Parameterized complexity classes

S. Huang (UNSW) Semester 2, 2017 17 / 35

Boolean Circuits

Definition 8

A Boolean circuit is a directed acyclic graph with the nodes labeled as follows:

@ every node of in-degree 0 is an input node,

@ every node with in-degree 1 is a negation node (=), and

@ every node with in-degree > 2 is either an AND-node (A) or an OR-node (V).
Moreover, exactly one node with out-degree 0 is also labeled the output node.
The depth of the circuit is the maximum length of a directed path from an input
node to the output node.

The weft of the circuit is the maximum number of nodes with in-degree > 3 on a
directed path from an input node to the output node.

S. Huang (UNSW) Semester 2, 2017 18 / 35

S. Huang (UNSW)

Weighted Circuit Satisfiability

Given an assignment of Boolean values to the input gates, the circuit determines
Boolean values at each node in the obvious way.

If the value of the output node is 1 for an input assignment, we say that this
assignment satisfies the circuit.

The weight of an assignment is its number of Is.

WEIGHTED CIRCUIT SATISFIABILITY (WCS)

[nput: A Boolean circuit C, an integer k
Parameter: k&
Question: Is there an assignment with weight % that satisfies C'7

Exercise: Show that WEIGHTED CIRCUIT SATISFIABILITY € XP.

S. Huang (UNSW) Semester 2, 2017 20 / 35

W(CS for special circuits

Definition 9

The class of circuits C; 4 contains the circuits with weft < ¢ and depth < d.

For any class of circuits C, we can define the following problem.

WCS[(C]
Input: A Boolean circuit C € C, an integer k
Parameter: k
Question: Is there an assignment with weight & that satisfies C7

S. Huang (UNSW) Semester 2, 2017 21 / 35

W classes

Definition 10 (W-hierarchy)

Let t € {1,2,...}. A parameterized problem II is in the parameterized complexity
class W[t] if there exists a parameterized reduction from II to WCSI[C; 4] for some

constant d > 1.

Semester 2, 2017

S. Huang (UNSW)

Independent Set and Dominating Set

INDEPENDENT SET € W[1]. I
DOMINATING SET € W[2]. |

Recall: A dominating set of a graph G = (V, E) is a set of vertices S C V such
that Ng[S] =V.

DOMINATING SET
Input: A graph G = (V, E) and an integer k
Parameter: k
Question: Does G have a dominating set of size at most k?

S. Huang (UNSW) Semester 2, 2017

“Proof” by picture

Parameterized reductions from INDEPENDENT SET to WCS[C; 3] and from
DOMINATING SET to WCS[C,).

Setting an input node to 1 corresponds to adding the corresponding vertex to the
independent set / dominating set.

S. Huang (UNSW)

Definition 13

Lett € {1,2,...}.
A parameterized decision problem II is W/[t]-hard if for every parameterized
decision problem II" in W[¢t], there is a parameterized reduction from II" to II.

IT is W(t]-complete if IT € W[¢] and II is W[t]-hard.

S. Huang (UNSW) Semester 2, 2017 25 / 35

Definition 13

Let t € {1,2,...}.

A parameterized decision problem II is W/[t]-hard if for every parameterized
decision problem IT" in W[t], there is a parameterized reduction from II" to II.
IT is W(t]-complete if IT € W[¢] and II is W[t]-hard.

Theorem 14
INDEPENDENT SET is W([1]-complete.

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science 141(1&2), 109-131 (1995).

DOMINATING SET is W[2]|-complete.

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Computing 24(4), 873-921 (1995).

S. Huang (UNSW) Semester 2, 2017

Proving W-hardness

To show that a parameterized decision problem II is W/[t]-hard:

@ Select a W[t]-hard problem II’
@ Show that TI" <gpt II by designing a parameterized reduction from II" to II
o Design an algorithm, that, for any instance I’ of II' with parameter £/,
produces an equivalent instance [of II with parameter &
o Show that k is upper bounded by a function of &’
e Show that there exists a function f such that the running time of the
algorithm is f (k') - [1|°)

S. Huang (UNSW) Semester 2, 2017 26 / 35

Outline

© Case studies

S. Huang (UNSW) Semester 2, 2017 27 / 35

A clique in a graph G = (V, E) is a subset of its vertices S C V' such that every
two vertices from S are adjacent in G.

CLIQUE
Input: Graph G = (V, E), integer k
Parameter: k&
Question: Does G have a clique of size k7

o We will show that CLIQUE is W[1]-hard by a parameterized reduction from
INDEPENDENT SET.

S. Huang (UNSW) Semester 2, 2017

Clique is W([1]-hard
INDEPENDENT SET <pgp1 CLIQUE. \

Proof.

Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such
that &’ < g(k) for some computable function g.

Semester 2, 2017

S. Huang (UNSW)

Clique is W([1]-hard
INDEPENDENT SET <pgp1 CLIQUE. \

Proof.
Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such

that &" < g(k) for some computable function g.
Construction. Set k' < k and G’ + G = (V,{uwv : u,v € V,u # v,uv ¢ E}).

Semester 2, 2017

S. Huang (UNSW)

Clique is W([1]-hard
INDEPENDENT SET <pgp1 CLIQUE. \

Proof.

Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such
that &’ < g(k) for some computable function g.

Construction. Set k' <+ k and G’ < G = (V,{uwv : u,v € V,u # v,uv ¢ E}).
Equivalence. We need to show that (G, k) is a YES-instance for INDEPENDENT
SET if and only if (G', k") is a YEs-instance for CLIQUE.

S. Huang (UNSW) Semester 2, 2017

Clique is W([1]-hard
INDEPENDENT SET <pgp1 CLIQUE. \

Proof.

Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such
that &’ < g(k) for some computable function g.

Construction. Set k' <+ k and G’ < G = (V,{uwv : u,v € V,u # v,uv ¢ E}).
Equivalence. We need to show that (G, k) is a YES-instance for INDEPENDENT
SET if and only if (G', k") is a YEs-instance for CLIQUE.

(=): Let S be an independent set of size k in GG. For every two vertices u,v € S,
we have that uv ¢ E. Therefore, uv € E(G) for every two vertices in S. We
conclude that S is a clique of size k in .

S. Huang (UNSW) Semester 2, 2017

Clique is W([1]-hard
INDEPENDENT SET <pgp1 CLIQUE.

Proof.

Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such
that &’ < g(k) for some computable function g.

Construction. Set k' <+ k and G’ < G = (V,{uwv : u,v € V,u # v,uv ¢ E}).
Equivalence. We need to show that (G, k) is a YES-instance for INDEPENDENT
SET if and only if (G', k") is a YEs-instance for CLIQUE.

(=): Let S be an independent set of size k in GG. For every two vertices u,v € S,
we have that uv ¢ E. Therefore, uv € E(G) for every two vertices in S. We
conclude that S is a clique of size k in .

(«<=): Let S be a clique of size k in G. By a similar argument, S is an independent

set of size k in (.

S. Huang (UNSW) Semester 2, 2017

Clique is W([1]-hard

INDEPENDENT SET <pgp1 CLIQUE.

Proof.

Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such
that &’ < g(k) for some computable function g.

Construction. Set k' <+ k and G’ < G = (V,{uwv : u,v € V,u # v,uv ¢ E}).
Equivalence. We need to show that (G, k) is a YES-instance for INDEPENDENT
SET if and only if (G', k") is a YEs-instance for CLIQUE.

(=): Let S be an independent set of size k in GG. For every two vertices u,v € S,
we have that uv ¢ E. Therefore, uv € E(G) for every two vertices in S. We
conclude that S is a clique of size k in .

(«<=): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.

Parameter. k' < k.

S. Huang (UNSW) Semester 2, 2017

Clique is W([1]-hard

INDEPENDENT SET <pgp1 CLIQUE.

Proof.

Given any instance (G = (V, E), k) for INDEPENDENT SET, we need to describe
an FPT algorithm that constructs an equivalent instance (G’, k") for CLIQUE such
that &’ < g(k) for some computable function g.

Construction. Set k' <+ k and G’ < G = (V,{uwv : u,v € V,u # v,uv ¢ E}).
Equivalence. We need to show that (G, k) is a YES-instance for INDEPENDENT
SET if and only if (G', k") is a YEs-instance for CLIQUE.

(=): Let S be an independent set of size k in GG. For every two vertices u,v € S,
we have that uv ¢ E. Therefore, uv € E(G) for every two vertices in S. We
conclude that S is a clique of size k in .

(«<=): Let S be a clique of size k in G. By a similar argument, S is an independent
set of size k in G.

Parameter. k' < k.

Running time. The construction can clearly be done in FPT time, and even in
polynomial time. O

S. Huang (UNSW) Semester 2, 2017

Clique is W[1]-hard Il

CLIQUE is W(1]-hard l

S. Huang (UNSW) Semester 2, 2017 30 / 35

Exercise

Recall: A k-coloring of a graph G = (V, E) is a function f: V — {1,2, ..., k}
assigning colors to V' such that no two adjacent vertices receive the same color.

MurTiCOLOR CLIQUE

Input: A graph G = (V, E), an integer k, and a k-coloring of G
Parameter: k

Question: Does G have a clique of size k that contains exactly one vertex
from each color class?

@ Show that MULTICOLOR CLIQUE is W[1]-hard.

S. Huang (UNSW) Semester 2, 2017 31 / 35

Exercise

A set system S is a pair (V, H), where V is a finite set of elements and H is a set
of subsets of V.

A set cover of a set system S = (V, H) is a subset X of H such that each
element of V' is contained in at least one of the sets in X, i.e., UYGX Y=V.

SET COVER
Input: A set system S = (V, H) and an integer k
Parameter: &
Question: Does S have a set cover of cardinality at most k7

@ Show that SET COVER is W[2]-hard.

S. Huang (UNSW) Semester 2, 2017

Exercise

A hitting set of a set system S = (V| H) is a subset X of V' such that X contains
at least one element of each set in H, i.e., X NY () foreach Y € H.

HiTtTING SET
Input: A set system S = (V, H) and an integer k
Parameter: k&
Question: Does S have a hitting set of size at most k?

S5

@ Show that HITTING SET is W[2]-hard.

—

S. Huang (UNSW) Semester 2, 2017 33 / 35

Outline

@ Further Reading

S. Huang (UNSW) Semester 2, 2017 34 / 35

Further Reading

o Chapter 13, Fixed-parameter Intractability in
Marek Cygan, Fedor V. Fomin, tukasz Kowalik, Daniel Lokshtanov, Déniel
Marx, Marcin Pilipczuk, MichatPilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

o Chapter 13, Parameterized Complexity Theory in
Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford
University Press, 2006.

@ Elements of Chapters 20-23 in
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Springer, 2013.

S. Huang (UNSW) Semester 2, 2017 35 / 35

	Reminder: Polynomial Time Reductions and NP-completeness
	Parameterized Complexity Theory
	Parameterized reductions
	Parameterized complexity classes

	Case studies
	Further Reading

