Noncooperative Games

COMP4418 Knowledge Representation and Reasoning

Abdallah Saffidine ${ }^{1}$
${ }^{1}$ abdallah.saffidine@gmail.com slides design: Haris Aziz

Semester 2, 2017

Outline

(1) Matrix Form Games
(2) Best response and Nash equilibrium
(3) Mixed Strategies

(4) Further Reading

Outline

(1) Matrix Form Games

(2) Best response and Nash equilibrium

(3) Mixed Strategies

4 Further Reading

Prisoner's Dilemma

Both prisoners benefit if they cooperate. If one prisoner defects and the other does not, then the defecting prisoner gets out free!

Setup

An n-player game (N, A, u) consists of

- Set of players $N=\{1, \ldots, n\}$
- $A=A_{1} \times \cdots A_{n}$ where A_{i} is the action set of player i
- $a \in A$ is an action profile.
- $u=\left(u_{1}, \ldots, u_{n}\right)$ specifies a utility function $u_{i}: A \rightarrow \mathbb{R}$ for each player.

Bimatrix (2-player) Games

- Actions of player $1=A_{1}=\left\{a_{1}^{1}, a_{1}^{2}\right\}$.
- Actions of player $2=A_{2}=\left\{a_{2}^{1}, a_{2}^{2}\right\}$.

Prisoner's Dilemma

Both prisoners benefit if they cooperate. If one prisoner defects and the other does not, then the defecting prisoner gets out free!

Penalty Shootout

Player 1 (Goal-keeper) wants to match; Player 2 (penalty taker) does not want to match.

\[

\]

Zero Sum Games

In zero-sum games, there are two players and for all action profiles $a \in A$, $u_{1}(a)+u_{2}(a)=0$.

Example

\[

\]

	Heads	Tails
Heads	1	-1
Tails	-1	1

Rock-Paper-Scissors

Both players draw if they have the same action. Otherwise, playing Scissor wins against Paper, playing Paper wins against Rock, and playing Rock wins against Scissors.

Battle of the Sexes

Player 1 (wife) prefers Ballet over Football. Player 2 (husband) prefers Football over Ballet. Both prefer being together than going alone.

Pareto Optimality

One outcome o^{\prime} Pareto dominates another outcome o if o^{\prime} all players prefer o^{\prime} at least as much as o and at least one player strictly prefers o^{\prime} to o.

Each game admits at least one Pareto optimal outcome.

Outline

(1) Matrix Form Games

(2) Best response and Nash equilibrium
(3) Mixed Strategies
4) Further Reading

Best Response

Let $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$.

Definition (Best Response)

$$
a_{i}^{\prime} \in B R\left(a_{-i}\right)
$$

iff

$$
\forall a_{i} \in A_{i}, u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right)
$$

The best response of a player gives the player maximum possible utility.

Nash Equilibrium

Let $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$.

Definition (Best Response)

$a=\left(a_{1}, \ldots, a_{n}\right)$ is a (pure) Nash equilibrium iff

$$
\forall i, a_{i} \in B R\left(a_{-i}\right)
$$

A Nash equilibrium is an action profile in which each player plays a best response.

Battle of the Sexes: Pure Nash Equilibria

\section*{Ballet Football
 | 2,1 | 0,0 |
| :--- | :--- |
| 0,0 | 1,2 |}

What are the pure Nash equilibria of the game?

Battle of the Sexes: Pure Nash Equilibria

Ballet Football

Pure Nash equilibria:

- (Ballet, Ballet)
- (Football, Football)

Prisoner's Dilemma

What are the pure Nash equilibria of the game?

Prisoner's Dilemma

- The only Nash equilibrium is (defect, defect).
- The outcome of (defect,defect) is Pareto dominated by the outcome of (cooperate, cooperate).

Penalty Shootout

What are the pure Nash equilibria of the game?

Penalty Shootout

What are the pure Nash equilibria of the game?
A pure Nash equilibrium may not exist.

Complexity of a Computing a Pure Nash Equilibrium

Let us assume there are n players and each player has m actions.

- for each of the m^{n} possible action profiles, check whether some some player out of the n player has a different action among the m actions that gives more utility.
- Total number of steps: $O\left(m^{n} m n\right)=O\left(m^{n+1} n\right)$

Outline

(1) Matrix Form Games

(2) Best response and Nash equilibrium

(3) Mixed Strategies

4 Further Reading

Playing pure actions may not be a good idea

Example (Penalty Shootout)

Mixed Strategies

Recall that the possible set of pure actions of each player $i \in N$ is A_{i}.

- A pure strategy is one in which exactly one action is played with probability one.
- A mixed strategy: more than one action is played with non-zero probability.

The set of strategies for player i is $S_{i}=\Delta\left(A_{i}\right)$ where $\Delta\left(A_{i}\right)$ is the set of probability distributions over A_{i}.

The set of all strategy profiles is $S=S_{1} \times \cdots \times S_{n}$.

Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

$$
\begin{gathered}
u_{i}=\sum_{a \in A} u_{i}(a) \operatorname{Pr}(a \mid s) \\
\operatorname{Pr}(a \mid s)=\prod_{j \in N} s_{j}\left(a_{j}\right)
\end{gathered}
$$

Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

$$
\begin{aligned}
& u_{i}=\sum_{a \in A} u_{i}(a) \operatorname{Pr}(a \mid s) \\
& \operatorname{Pr}(a \mid s)=\prod_{j \in N} s_{j}\left(a_{j}\right)
\end{aligned}
$$

Example (Penalty Shootout)

Consider the following strategy profile Player 1 plays Left with probability 0.1 and Right with probability 0.9 . Player 2 players Left with probability 0.1 and Right with probability 0.9 .
Question: What is the utility of player 1 under the strategy profile?

Mixed Strategies

We want to analyze the payoff of players under a mixed strategy profile:

$$
\begin{gathered}
u_{i}=\sum_{a \in A} u_{i}(a) \operatorname{Pr}(a \mid s) \\
\operatorname{Pr}(a \mid s)=\prod_{j \in N} s_{j}\left(a_{j}\right)
\end{gathered}
$$

Example (Penalty Shootout)

Consider the following strategy profile Player 1 plays Left with probability 0.1 and Right with probability 0.9 . Player 2 players Left with probability 0.1 and Right with probability 0.9 .
Then $u_{1}=(0.1 \times 0.1) 1+(0.1 \times 0.9)(-1)+(0.9 \times 0.1)(-1)+(0.9 \times 0.9)(1)=$ $0.01-0.09-0.09+0.81=0.64$.

Mixed Strategies

Definition (Best Response)

Best response: $s_{i}^{\prime} \in B R\left(s_{-i}\right)$ iff $\forall s_{i} \in S_{i}, u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$.
The best response of a player gives the player maximum possible utility.

Definition (Nash equilibrium)

$s=\left(s_{1}, \ldots, s_{n}\right)$ is a Nash equilibrium iff $\forall i \in N, s_{i} \in B R\left(s_{-i}\right)$.
A Nash equilibrium is an action profile in which each player plays a best response.

Nash's Theorem

Theorem (Nash's Theorem)

A mixed Nash equilibrium always exists.

Battle of the Sexes

Battle of the Sexes

\section*{Ballet Football
 Ballet Football
 | 2,1 | 0,0 |
| :---: | :---: |
| 0,0 | 1,2 |}

- Let us assume that both players play their full support.
- Player 2 plays B with p and F with probability $1-p$.
- Player 1 must be indifferent between the actions it plays.

$$
\begin{array}{r}
2(p)+0(1-p)=0 p+1(1-p) \\
p=1 / 3
\end{array}
$$

- Player 1 plays B with q and F with probability $1-q$
- Player 2 must be indifferent between the actions it plays.

$$
\begin{array}{r}
1(q)+0(1-q)=0 q+2(1-q) \\
q=1 / 3 .
\end{array}
$$

Thus the mixed strategies $(2 / 3,1 / 3),(1 / 3,2 / 3)$ are in Nash equilibrium.

Support Enumeration Algorithm

For 2-player games, a support profile can be checked for Nash equilibria as follows:

$$
\begin{aligned}
\sum_{a_{-i} \in A_{-i}} s_{-i}\left(a_{-i}\right) u_{i}\left(a_{i}, a_{-i}\right)=U^{*} & \forall i \in N, a_{i} \in B_{i} \\
\sum_{a_{-i} \in A_{-i}} s_{-i}\left(a_{-i}\right) u_{i}\left(a_{i}, a_{-i}\right) \leq U^{*} & \forall i \in N, a_{i} \notin B_{i} \\
s_{i}\left(a_{i}\right) \geq 0 & \forall i \in N, a_{i} \in B_{i} \\
s_{i}\left(a_{i}\right) & =0
\end{aligned} \begin{aligned}
& \forall i \in N, a_{i} \notin B_{i} \\
\sum_{a_{i} \in A_{i}} s_{i}\left(a_{i}\right) & =1
\end{aligned}
$$

When there are more than two players, the constraints are not linear.

Complexity of Computing Nash Equilibrium

PPAD (Polynomial Parity Arguments on Directed graphs) is a complexity class of computational problems for which a solution always exists because of a parity argument on directed graphs.
The class PPAD introduced by Christos Papadimitriou in 1994.
Representative PPAD problem: Given an exponential-size directed graph with no isolated nodes and with every node having in-degree and out-degree at most one described by a polynomial-time computable function $f(v)$ that outputs the predecessor and successor of v, and a node s with degree 1 , find a $t \neq s$ that is either a source or a sink.

Theorem (Daskalakis et al., Chen \& Deng; 2005)

The problem of finding a Nash equilibrium is PPAD-complete.

- It is believed that P is not equivalent to PPAD.
- PPAD-hardness is viewed as evidence that the problem does not admit an efficient algorithm.

Outline

(1) Matrix Form Games

(2) Best response and Nash equilibrium

(3) Mixed Strategies

(4) Further Reading

Reading

- K. Leyton-Brown and Y. Shoham, Essentials of Game Theory: A Concise Multidisciplinary Introduction. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan \& Claypool Publishers, 2008. www.gtessentials.org
- Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. 2009.
http://www.masfoundations.org

