DISTRIBUTED SYSTEMS (COMP9243) DATA VS CONTROL REPLICATION

Lecture 3a: Replication & Consistency Data Replication (Server Replication/Mirroring):
Slide 1 Slide 3
1 FIND YOUR LACK OF CONSISTENCY
/ DISTURBING
@ Replication i
@ Consistency [ e
e Models vs Protocols =
® Update propagation
Data Replication (Caching):
REPLICATION
Pop Website Cache

Make copies of services on multiple machines. H
Why?: e

= Reliability

Web Server

Pop Website
e Redundancy == H TP
Slide 2 =» Performance Slide 4 - i

e Increase processing capacity
e Reduce communication HTTP

=» Scalability (prevent centralisation) Pop Website

e Prevent overloading of single server (size scalability)
e Avoid communication latencies (geographic scalability)

What's the difference between mirroring and caching?

DATA vs CONTROL REPLICATION 1 DATA vs CONTROL REPLICATION



Control Replication:

T T ; REPLICATION ISSUES

Web Server :
Apache + Perl ‘ UdeTeS

- process request SQL

- build web page =» Consistency (how to deal with updated data)
-» Update propagation

Slide 5 ‘ Slide 7  Replica placement
Web Server SQL Database .
Apache + perl so- | -» How many replicas?
procass reuest = Where to put them?
Redirection/Routing
= Which replica should clients use?
What are thethe challenges of doing this?
Data and Control Replication:
DISTRIBUTED DATA STORE
ST : =» dato-store stores data items
e - 1 Client’s Point of View:
|————— | |
~ process request !
- puldvieb page 3 Client A Client B Client C Client D
SQL Database
Slide 6 Slide 8
Web Server
Apache + Perl SQL
||
- process request
- build web page
SQL Database
We will be looking primarily at data replication Data Store

(including combined data and control replication).

REPLICATION ISSUES 3 DISTRIBUTED DATA STORE



Distributed Data-Store’s Point of View:

Client A Client B ClientC Client D
Slide 9
] | i —
Replica 1 Replica 2 Replica 3 Replica 4
w
Data Store
Data Model:

=» dataitem: simple variable
=» dataitem values: explicit (0, 1), abstract (a,b)
-» data store: collection of data items

Operations on a Data Store:
- Read. Ri(x)b Client i performs a read for data item x and it
Slide 10 returns b
=» Write. Wi(x)a Client i performs write on data item x setting it fo a
=» Operations not instantaneous
e Time of issue (when request is sent by client)
e Time of execution (when request is executed at a replica)
e Time of completion (when reply is received by client)
=» Coordination among replicas

DISTRIBUTED DATA STORE

Replica Managers:

©)
issue Client A Client B ClientC
completion i I i
Slide 11 Replica 1 v Replica 2 v Replica 3 v
@ Replica m‘:;;;;ils Replica Replica
consistency Manager |- | Manager |-= ' Manager
protocol updates
execution
Timeline:
=» ClientA/Replical: WA(x)1, WA(x)0
- ClientB/Replica2: RB(x) -, RB(x)1,RB(x)1,RB(x)0
. Client A/
Slide 12 W(x)1 W(x)0

Replica 1
R(x)—\\R(x)l MR(X)O

Client B/
Replica 2

CONSISTENCY




Slide 13

Slide 14

CONSISTENCY

Conflicting Data:
=» Do replicas have exactly the same data?
=» What differences are permitted?

Consistency Dimensions:
=» Time and Order
Time:
=» How old is the data (staleness)?
=» How old is the data allowed to be?

e Time, Versions
Operation order:

-» Were operations performed in the right order?
=» What orderings are allowed?

Real world examples of inconsistency?

Slide 15

ORDERING

Updates and concurrency result in conflicting operations

Conflicting Operations:
-» Read-write conflict (only 1 write)
-» Write-write conflict (multiple concurrent writes)
=» The order in which conflicting operations are performed affects
consistency

Partial vs Total Ordering:
=» partial order: order of a single client’s operations
=» total order: interleaving of all conflicting operations

ORDERING

Example:

ClientA: x = 1; x = 0; Possible results:
--,11,10,00

Client B: print(x);
How about 017

print(x);
What are the conflicting ops? What are the partial orders?
What are the total orders?

ClientA _W(X1  W(X)O0

Client B R(x)1

Can you sanely use a system like this?

CONSISTENCY MODEL

Defines which interleavings of operations are valid
(admissible)

Consistency Model:

Slide 16 -» Concerned with consistency of a data store.

=» Specifies characteristics of valid total orderings

A data store that implements a particular model of
consistency will provide a total ordering of operations
that is valid according to the model.

CONSISTENCY MODEL



Data Coherence vs Data Consistency:

Data Coherence ordering of operations for single data item
= e.g. aread of x will return the most recently written value of x

Data Consistency ordering of operations for whole data store

Slide 17 = implies data coherence

=» includes ordering of operations on other data items too

Non-distributed data store:
-» Data coherence is respected
=» Program order is maintained

DATA-CENTRIC CONSISTENCY MODEL

A contract, between a distributed data store and
clients, in which the data store specifies precisely
what the results of read and write operations are in

Slide 18 the presence of concurrency.

-» Multiple clients accessing the same data store
=» Described consistency is experienced by all clients

e Client A, Client B, Client C see same kinds of orderings
-» Non-mobile clients (replica used doesn’t change)

STRONG ORDERING VS WEAK ORDERING

STRONG ORDERING VS WEAK ORDERING

Strong Ordering (fight):

-» All writes must be performed in the order that they are invoked

=» Example: all replicas must see: W(x)a W(x)b W(x)c
=» Strict (Linearisable), Sequential, Causal, FIFO (PRAM)

Slide 19 Weak ordering (|Oose):

=» Ordering of groups of writes, rather than individual writes

=» Series of writes are grouped on a single replica

=» Only results of grouped writes propagated.

= Example: {W(x)a W(x)b W(x)c}=={W(x)a W(x)c}=={W(x)c}
=> Weak, Release, Entry

STRICT CONSISTENCY

Any read on a data item x returns a value
corresponding fo the result of the most recent write
on x

Absolute time ordering of all shared accesses
Clienta — WX Wea__

slide 20 Reoa

ClientB

Client A

RO~ R(a

Client B

strictly consistent not strictly consistent

What is most recent in a distributed system?
-» Assumes an absolute global time
=» Assumes instant communication (atomic operation)
=» Normal on a uniprocessor
x Impossible in a distributed system

LINEARISABLE CONSISTENCY



CAUSAL CONSISTENCY

LINEARISABLE CONSISTENCY
Potentially causally related writes are executed in the

All operations are performed in a single sequential same order everywhere

order Causally Related Operations:

-» Operations ordered according to a global (finite) timestamp. - Read followed by a write (in same client)

siide 21 = Program order of each client maintained slide23 = V(o followed by R(x) (in same or different clients)

Clienta W2 Clienta W2

Client A W(x)a W(x)c W(x)a W(x)c

)b W( Wb Clont B “Rpoa - =W(b

Client B ~—_ Client B Client B
Client C \m\\\ R(b Client C \\%\\\R(x)a ClientC R(a Rb _ R(x)c ClientC Rija_R(x)b R(Xc

R(x)b R(x)a R(x)c " R(x)b R(x)a R(X)c
client \%R(X)b Client b RODNR()a Client D Client D

causally consistent not causally consistent

Client A

linearisable not linearisable

How could we make this valid?

SEQUENTIAL CONSISTENCY

All operations are performed in some sequential order

-» More than one correct sequential order possible
= All clients see the same order

=» Program order of each client maintained

-» Not ordered according to time Why is this good?

FIFO (PRAM) CONSISTENCY

Only partial orderings of writes maintained

Clienta WX Wixe Clienta W2 Wexe
W W
Slide 22 Cllent A RS Clenta — R Slide 24 Client —R2_Wdb Cllnts R Woob

/ \ [

Client B Wby Client B W(x)l\a\ \\‘ ClientC RXa R(b_R(x)c ClientC R(x)a RXb R(X)c
\ T\ _ Clentd R(Mb__R(Ma_ RX)c Clientd R RXa _ R(b
Client C R(x)b R(x)a Client C 1 R¥a~~—, R(X)b ient ient
FIFO consistent not FIFO consistent
Client D Rigb NR(ja Client D RED "R(9a
! ) How could we make this valid?
sequential not sequential
Performance:

read time + write time >= minimal packet transfer time

CAUSAL CONSISTENCY 11 WEAK CONSISTENCY



WEAK CONSISTENCY

Shared data can be counted on fo be consistent
only after a synchronisation is done

Enforces consistency on a group of operations, rather than
single operations
=» Synchronisation variable (S)
Slide 25 = Synchronise operation (synchronise(S))
=» Define ‘critical section” with synchronise operations

Properties:

=» Order of synchronise operations sequentially consistent

=» Synchronise operation cannot be performed until all previous
writes have completed everywhere

-» Read or Write operations cannot be performed until all previous
synchronise operations have completed

Example:

=» synchronise(S) W(x)a W(y)b W(x)c synchronise(S)
-» Writes performed locally

=» Updates propagated only upon synchronisation

=» Only W(y)b and W(x)c have to be propagated

Slide 26
Client A W(x)a W(xb S ~— Client A W(x)a W(xb S
Client B % ;F<}h;§ Client B \\‘\‘ S RWa R0
Client C RXb  R(Xa™~.S Client C v S RXb R(x)a
weak consistent not weak consistent
How could we make this valid?
RELEASE CONSISTENCY 13

RELEASE CONSISTENCY

Explicit separation of synchronisation tasks
=» acquire(S) - bring local state up to date

-» release(S) - propagate all local updates
=» acquire-release pair defines ‘critical region’

Slide 27 )
Properties:
=» Order of synchronisation operations are FIFO consistent
-» Release cannot be performed until all previous reads and writes
done by the client have completed
-» Read or Write operations cannot be performed until all previous
acquires done by the client have completed
Client A Acq(S)  W(x)a W(x)b REI(S),,Q -
cient SAco(S) R _Rel)
Slide 28 Client C R®a—_,

release consistent

What is an example of an invalid ordering?

RELEASE CONSISTENCY



Lazy Release Consistency:
-» Don’t send updates on release
=» Acquire causes client to get newest state

-» Added efficiency if acquire-release performed by same client
(e.g., inaloop)

Slide 29
Client A Acq(S)  W(x)a Wb  Rel(S) v
Client B AGa(S) \ R(X)b__ Rel(S)
Client C R(ja
lazy release consistent
ENTRY CONSISTENCY
Synchronisation variable associated with specific
shared data item (guarded data item)
=» Each shared data item has own synchronisation variable
= acquire()
Slide 30

e Provides ownership of synchronisation variable

e Exclusive and nonexclusive access modes

e Synchronises data

e Requires communication with current owner
=» release()

e Relinquishes exclusive access (but not ownership)

ENTRY CONSISTENCY

Properties:
=» Acquire does not complete until all guarded data is brought up
to date locally

=» If a client has exclusive access to a synchronisation variable, no
other client can have any kind of access to it

-» When acquiring nonexclusive access, a client must first get the

Slide 31 updated values from the synchronisation variable’s current
owner
Client A Acq(Sx)  W(x)a Acq(Sy) W(y)b Rel(Sx) Rel(Sy) T
Client B Ao R(X)% \\\R(Y)N”
Client C ACa(Sy) R)b
entry consistent
CAP THEORY
C: Consistency: Linearisability
A: Availability: Timely response
P: Partition-Tolerance: Functions
in the face of a partition
Slide 32
Partition lahili
Tolerance || Availability /' vou can only choose two of
CAorP
15 CAP THEORY



CAP THEORY

CAP THEORY
C: Consistency: Linearisability C: Consistency: Linearisability
A: Availability: Timely response A: Availability: Timely response
P: Partition-Tolerance: Functions

P: Partition-Tolerance: Functions

in the face of a partition in the face of a partition

Slide 35

Partition
Tolerance

You can only choose two of Availability

You can only choose two of
CAorP

CAorP

CAP THEORY CAP Impossibility Proof:
C: Consistency: Linearisability
A: Availability: Timely response
P: Partition-Tolerance: Functions

in the face of a partition
Replica A Replica B
Slide 34 l Slide 36 0o (o]

You can only choose fwo of

CAorP

CAP THEORY 17 CAP THEORY



CAP Impossibility Proof:

Replica A '—Q‘—’ Replica B

Slide 37 ® ®

Read Write

CAP Impossibility Proof:

Replica A Replica B

Slide 38 0 ®

Write

CAP THEORY

CAP Impossibility Proof:

Replica A Replica B
Slide 39 o ®

Read Write

No Consistency

CAP Impossibility Proof:

Replica A Replica B

Slide 40 0 ®

Write (does not return)

No Availability

19 CAP THEORY 20



CAP Impossibility Proof:

Replica A Replica B
Slide 41 o (o]
Write (fails)

No Partition Tolerance

CAP CONSEQUENCES

For wide-area systems:
=» Must choose: Consistency or Availability
=» Choosing Availability

e Give up on consistency?

Slide 42 )
e Eventual consistency

=» Choosing Consistency

e No availability
e delayed (and potentially failing) operations

Why can’t we choose C and A and forget about P?

EVENTUAL CONSISTENCY

EVENTUAL CONSISTENCY

If no updates take place for a long time, all replicas
will gradually become consistent

Client A W(x)q wee
Client B RY) —aR0a R@e
Slide 43 Gienic — L Fta RN @o RO

eventual consistent

Requirements:
=» Few read-write conflicts (R » W)
=» Few write-write conflicts
=» Clients accept time inconsistency (i.e., old data)
=» What about ordering?

Examples:
-> DNS:

e no write-write conflicts

e updates slowly (1-2 days) propagate to all caches
Slide 44 -> WWW:

o few write-write conflicts

e mirrors eventually updated

e cached copies (browser or proxy) eventually replaced

e manual merging for write-write conflicts

21 CLIENT-CENTRIC CONSISTENCY MODELS
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CLIENT-CENTRIC CONSISTENCY MODELS

Provides guarantees about ordering of operations for
a single client
=» Single client accessing data store
=» Client accesses different replicas (modified data store model)
=» Dataisn’t shared by clients
=» Client A, Client B, Client C may see different kinds of orderings

Slide 45

In other words:

=» The effect of an operation depends on the client performing it
-» Effect also depends on the history of operations that client has
performed.

Data-Store Model for Client-Centric Consistency:

Client A Client A

R .

Client moves

——

Replica 1
I I I

[

Replica 3

Slide 46

Replica 2

Data Store
e Data-items have an owner

o No write-write conflicts

CLIENT-CENTRIC CONSISTENCY MODELS

Notation and Timeline for Client-Centric Consistency:

=» xi[t]: version of x at replica i atf fime t

-» Write Set: wS(xi[t]): set of writes at replica i that led to xi(t)

= WS(xilt1];xj[t2]): WS(Xj(t2)) contains same operations as
WS(xi(t1))

= wS('xilt1];xj[t2]): WS(Xj(t2)) does not contain the same
operations as WS(xi(t1))

=» R(xi[t]): aread of x returns xi(f)

Slide 47

R(x1)

W(x1) WS(x1
Replica 1 \(X ) S(1)

\“\ W(x1) WS(x1) W(x2) WS(x1;x2) R(x2)

Replica 2

MONOTONIC READS

If a client has seen a value of x at a fime t, it will never
see an older version of x at a later time

Slide 48

WS(x1) R(x1) WS(x1) R(x1)

Replica 1

Replica 1

WS(x1;x2) R(x2) WS('x1;x2) R(x2) WS(x1;x2)

Replica 2

Replica 2

manotonic-read consistent not monotonic-read consistent

When is Monotonic Reads sufficient?

23 MONOTONIC WRITES

24



Slide 49

Slide 50

WRITE FOLLOWS READS 25

MoNOTONIC WRITES

A write operation on data item x is completed before
any successive write on x by the same client

All writes by a single client are sequentially ordered.

Replica 1 Wixt) W)

Replica 1

Slide 51

Replica 2 W(x1) WS(x1) W(x2) WS(!x1;x0) W(x2)

Replica 2

manotonic-write consistent not monotonic-write consistent

How is this different from FIFO consistency?
=» Only applies to write operations of single client.

=» Writes from clients not requiring monotonic writes may appear
in different orders.

READ YOUR WRITES

The effect of a write on x will always be seen by a
successive read of x by the same client

Slide 52

W(x1,
Replica 1 (1)

W(x1,
(1) Replica 1

Replica 2 1 WS(x1;x2) R(x2) WS(1x1:x2) R(x2)

Replica 2

read-your-writes consistent not read-your-writes consistent

When is Read Your Writes sufficient?

WRITE FOLLOWS READS

A write operation on x will be performed on a copy of
X that is up to date with the value most recently read
by the same client

Replica 1 R(x1) WS(x1) R(x1)

Replica 1

W(x1)

Replica 2 1 WS(x1;x2) W(x3) WS(Ix1;x2) W(x3)

Replica 2

writes—follow-reads consistent not writes—follow-reads consistent

When is Write Follows Reads sufficient?

CHOOSING THE RIGHT MODEL
Trade-offs

Consistency and Redundancy:

=» All copies must be strongly consistent

=» All copies must contain full state

-» Reduced consistency — reduced reliability

Consistency and Performance:
=» Consistency requires extra work and communication
x Can result in loss of overall performance
v Weaker consistency possible
Consistency and Scalability:
=» Implementation of consistency must be scalable

e don’ttake a centralised approach
e avoid foo much extra communication

CONSISTENCY PROTOCOLS 26



CONSISTENCY PROTOCOLS

Consistency Protocol: implementation of a consistency
model

Primary-Based Protocols:

Slide 53 - Remote-write protocols
-» Local-write protocols

Replicated-Write Protocols:
-» Active Replication
-» Quorum-Based Protocols

REMOTE-WRITE PROTOCOLS

Single Server:
-» All writes and reads executed at single server
x No replication of data

Client Client
Single server
A for item x Backup server
Slide 54 wi| |wa R1| |R4
W2 R2
> D E—
I« —>
w3 R3 Data store
W1. Write request R1. Read request
W2. Forward request to server for x R2. Forward request to server for x
W3. Acknowledge write completed R3. Return response
W4. Acknowledge write completed R4. Return response

REMOTE-WRITE PROTOCOLS

27

Primary-Backup:
=» All writes executed at single server, Reads are local
=» Updates block until executed on all backups
x Performance

Client Client
Primary server
for item x Backup server
. W1| (W5 R1| [R2
Slide 55
St
| ————
\ny U Data store
W1. Write request R1. Read request
W2. Forward request to primary R2. Response to read
W3, Tell backups to update
W4. Acknowledge update
WS5. Acknowledge write completed
LocAL-WRITE PROTOCOLS
Migration:
-» Data item migrated to local server on access
v Performance (when not sharing data)
Client
Current server New server
for item x for item x
Slide 56

Data store

& oo =

1. Read or write request

2. Forward request to current server for x

3. Move item x to client's server

4. Return result of operation on client's server

LOCAL-WRITE PROTOCOLS

28



Migrating Primary (multiple reader/single writer):
v Performance for concurrent reads
x Performance for concurrent writes

Client Client
Old primary New primary
for item x for item x Backup server

R1| |R2 wi| |wa
Slide 57 % % ws X % ws %
w4 W4
wstt wa W Jj

W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read
W3. Acknowledge write completed

WA4. Tell backups to update

WS5. Acknowledge update

Data store

ACTIVE REPLICATION
-» Updates (write operation) sent to all replicas
-» Need totally-ordered multicast (for sequential consistency)
-» e.g. sequencer/coordinator fo add sequence numbers

Client

Slide 58

inc(i) Tne(i) inc(i)

QUORUM-BASED PROTOCOLS

QUORUM-BASED PROTOCOLS

-» \Voting

=» Versioned data

-» Read Quorum: Nr

= Write Quorum: Nw

=> Nr+ Nw >N Why?

=> Nw > N/2 Why?

Slide 59
Read quorum
A B (o)D) ‘A B c b
’E’””’Fﬁﬂ G H§ E ® G H
[ L { kL
Np =3, N, =10 \ / Ng=1, N, =12
Write quorum
@ ® ©
PusH vs PuLL
Client A Client B
i Read wmei
- - w- -
Replica 1 Replica 2 Replica 1 Replica 2
I I I
Slide 60
Pull: Push:

-» Updates propagated
only on request

=» Also called client-based

- R/W low

= Polling delay

-» Push updates to replicas

-» Also called server-based

-> When low staleness re-
quired

> R»W

x Have to keep track of all
replicas

PusH vs PuLL

30



Push Update Propagation:
What to propagate?
= Data
e R/W high
-» Update operation

Slide 61

e low bandwidth costs
-» Notification/Invalidation
o R/W low

Compromise: Leases:
Server promises to push updates until lease expires
Lease length depends on:
Slide 62 age: Last time item was modified
renewal-frequency: How often replica needs to be updated

state-space overhead: lower expiration time to reduce
bookkeeping when many clients

REPLICA PLACEMENT 31

REPLICA PLACEMENT

slide 63

Permanent
replicas

Server-initiated replicas

Permanent Replicas:
=» Initial set of replicas
=» Created and maintained by data-store owner(s)
=> Allow writes

Server-Initiated Replicas:
-» Enhance performance
-» Not maintained by owner

. -» Placed close to groups of clients
Slide 64
e Manually

e Dynamically

Client-Initiated Replicas:
-» Client caches
-» Temporary
=» Owner not aware of replica
-» Placed close to client
=» Maintained by host (often client)

DYNAMIC REPLICATION

—» Server-initiated replication
---» Client-initiated replication

32



DYNAMIC REPLICATION

Situation changes over time
=» Number of users, Amount of data
=» Flash crowds
- R/W ratio

Dynamic Replica Placement:
-» Network of replica servers
-» Keep track of data item requests at each replica
=» Thresholds:

Slide 65

e Deletion threshold
e Replication threshold
e Migration threshold
=» Clients always send requests to nearest server

MISCELLANEOUS IMPLEMENTATION AND DESIGN ISSUES

End-to-End argument:
=» Where to implement replication mechanisms?
=» Application? Middleware? OS?

Policy vs Mechanism:
=» Consistency models built into middleware?

Slide 66 -» One-size-fits-all?

Determining Policy:
= Who determines the consistency model used?
e Application, Middleware
e Client, Server
Keep It Simple, Stupid:
=» Wil the programmer understand the consistency model?

READING LisT

READING LIST

Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services An overview of

Slide 67 the CAP theorem and its proof.

Eventual Consistency An overview of eventual consistency
and client-centric consistency models.

HOMEWORK

Consistency Models:
=» Research consistency models used in existing Distributed
Systems
=» Why are those models being used?
=» In the systems you looked at, could other models have been
used? Would that have made the system better?

Slide 68 |\ acker's Edition:

=» Find a system that provides Eventual Consistency
=» (alternatively, implement (possibly in Erlang) a system that
provides Eventual Consistency)
-» Replicate some data and perform queries. How often do you
get inconsistent results?
=» If you can tweak replication parameters, how do they affect
the consistency of results?

33 HOMEWORK 34



