

Cognitive Robotics Using the Soar Cognitive Architecture

John E. Laird, Keegan R. Kinkade, Shiwali Mohan, Joseph Z. Xu
Computer Science and Engineering

University of Michigan, Ann Arbor, MI 48109-2121
{laird, kinkadek, shiwali, jzxu}@umich.edu

Abstract
Our long-term goal is to develop autonomous robotic systems that
have the cognitive abilities of humans, including communication,
coordination, adapting to novel situations, and learning through
experience. Our approach rests on the integration of the Soar
cognitive architecture with both virtual and physical robotic
systems. Soar has been used to develop a wide variety of
knowledge-rich agents for complex virtual environments,
including distributed training environments and interactive
computer games. For development and testing in robotic virtual
environments, Soar interfaces to a variety of robotic simulators
and a simple mobile robot. We have recently made significant
extensions to Soar that add new memories and new non-symbolic
reasoning to Soar’s original symbolic processing, which improves
Soar abilities for control of robots. These extensions include
mental imagery, episodic and semantic memory, reinforcement
learning, and continuous model learning. This paper presents
research in mobile robotics, relational and continuous model
learning, and learning by situated, interactive instruction.

Introduction
Our goal is to support the creation of robotic agents that
have the cognitive capabilities of humans. General
intelligent entities are distinguished by their ability to
pursue a wide variety of goals embedded in many different
problem spaces and to use large bodies of different types of
knowledge in many ways – to assess the current situation
in the environment, to react to changes in the environment,
to deliberately select actions in order to pursue goals, to
plan future actions, to predict future states, to reflect on
past behavior in order to improve future performance, and
to adapt to regularities in the environment, all in real time.
Approaches such as MDPs work well for specific tasks
where there are limited and predictable numbers of
features; however, they do not scale to complex behavior
and planning; nor do they address how an agent efficiently
manages its memory of situations, events, and the
structured knowledge it acquires through experience.

Our approach is to develop adaptive robotic agents using
a cognitive architecture (Langley, Laird, Rogers 2009) that

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is integrated with perceptual and motor systems. The
cognitive architecture provides the underlying knowledge
representations; memories to hold both short-term and
long-term knowledge; processes for decision making,
accessing memory, and learning; and interfaces that
support the transductions of continuous perception into
symbolic structures and discrete motor commands into
continuous control systems. The same architecture is used
across all tasks, as is task-independent knowledge that
supports general capabilities such as planning. Domain
knowledge specializes behavior to specific tasks so that a
single agent, encoded with knowledge for many domains,
can pursue a variety of tasks and with learning, an agent
can dynamically extend the tasks it performs. Each new
task or domain does not require starting from scratch – task
knowledge must be added, but the architecture and general
knowledge is shared across all tasks. A cognitive
architecture also provides the focal point for integration of
research on perception, control, motor systems, and
cognition. Research into more advanced capabilities, such
as coordination, metacognition, and advanced learning
mechanisms builds on those core capabilities.

We use the Soar cognitive architecture (Laird 2012) for
our research in cognitive robotics. Soar was the first
cognitive architecture integrated with real robots and has
been used in multiple robotic agents (Laird et al. 1991;
Laird & Rosenbloom 2000; Benjamin, Lyons, & Lonsdale
2004; Benjamin, Lonsdale, & Lyons 2006; 2007).
Recently, we made significant extensions to Soar, many of
which enhance Soar’s ability to support cognitive robots.

In this paper, we start with an overview of Soar,
emphasizing the recent extensions to Soar and how the
cognitive components of Soar interface to sensors and
motor systems. We then present some of our current
research projects where we are expanding the abilities of
Soar robotic agents. We start with a Soar agent that
controls a small mobile robot and performs missions in a
combined simulated/real world domain. This agent
demonstrates how many of the mechanisms in Soar
provide capabilities for cognitive robotics. We then
describe the integration of SLAM so that the agent builds
an internal model of the environment from laser-range
data. The following section describes research on learning
continuous and relational models from experience. Finally

46

Cognitive Robotics
AAAI Technical Report WS-12-06

we describe the use of situated interactive instruction,
where a human can use language to dynamically extend an
agent’s knowledge and skills through instruction.

Basics of the Soar Cognitive Architecture
Figure 1 shows a structural view of Soar in terms of its
primitive memories (square-edged modules), processes
(round-edged modules), and their connections (arrows).
Near the bottom of the figure is Soar’s task-independent
Spatial Visual System (SVS; Lathrop, Wintermute, &
Laird 2011) that supports interaction between with the
continuous representations required for perception and
motor control and the symbolic, relational representations
in Soar. The continuous environment state is represented in
SVS as a scene graph composed of discrete objects and
their continuous properties. The identity of objects and
extracted symbolic features are added to symbolic working
memory; however, spatial relations are extracted only as
requested: the Soar agent can query the scene graph with
binary spatial predicates such as “left-of(A, B)” or
“contacting(C, D)”. Thus, the set of predicates is task-
independent and fixed in the architecture, but decisions
about which predicates to extract are determined by task-
specific agent knowledge.
 In additional to extracting a symbolic description of the
environment, SVS transduces discrete actions into
continuous control of the motor system. SVS not only
supports action in the external environment, but also action
on its internal representation of perception. This allows an
agent to use mental imagery (Kosslyn, Thompson & Ganis
2006; Wintermute, 2009) where the agent can perform
hypothetical reasoning on a continuous representation. The

continuous controllers can support arbitrary behavior, such
as nonholonomic control of a car, using modern path
planning algorithms, such as RRT (Wintermute 2009).
Planning at the continuous level uses models of continuous
environment dynamics learned online and incrementally
(Xu & Laird 2011). These capabilities overcome one of the
major weaknesses of pure symbolic systems that are
prisoners to their symbolic abstractions. Soar can
reason/plan using both symbolic (described below) and
non-symbolic structures. When planning with the non-
symbolic structures, the agent can monitor and control the
non-symbolic reasoning by extracting relevant symbolic
predicates. This approach has proved successful across
many complex, continuous domains where pure symbolic
reasoning is inadequate (Wintermute 2010).

On the symbolic side, working memory maintains
relational representations of current and recent sensory
data, current goals, and the agent’s interpretation of the
situation given its goals. Working memory buffers provide
interfaces to Soar’s long-term memories and motor system.

Semantic memory is Soar’s permanent store of its global
world model, and corresponds to the long-term declarative
memory in ACT-R (Anderson et al. 2004). Knowledge is
retrieved from semantic memory via deliberate associative
retrieval. Although knowledge accumulates in this memory
as new information is discovered, it can be initialized from
existing knowledge bases. Soar also has an episodic
memory that stores snapshots of the agent's experiences.
Episodic memory provides an agent with the ability to
reflect on prior experiences and use them to guide future
behavior and learning. Episodic memory is often
overlooked in cognitive systems, but is critical for

Semantic

Symbolic Working Memory

Figure 1. Soar block diagram.

Continuous
Model

Body

Semantic
Symbolic Long-Term Memories

Procedural

D
ecision

Procedure
Chunking

Episodic

Reinforcement
Learning

Perception

Semantic
Learning

Episodic
Learning

Mental Imagery Scene Graph

Controllers

SVS

Model
Learning

47

providing access to contextualized experiences. Most robot
architectures ignore semantic or episodic knowledge, and
have only limited, task-dependent long-term declarative
memories. Agents developed in these architectures are only
in the “here and now” and do not have the sense of history
made possible by these additional memories.

Procedural memory contains Soar's knowledge of how
to select and perform discrete actions, encoded as if-then
rules called productions. Productions fire in parallel
whenever they match working memory and act as an
associational memory for procedural knowledge.
Productions support the proposal, evaluation, selection,
and application of operators. Operators are the locus of
decision making in Soar. Operators are proposed (created
in working memory) by rules based on the current context.
Additional rules evaluate the proposed operators, creating
preferences. This evaluation knowledge can be tuned by
reinforcement learning if reward is available, either from
the environment or from internal sources (Marinier, Laird
& Lewis 2008). The preferences are analyzed by a fixed
decision procedure and if a single operator is
unambiguously preferred by the evaluation knowledge, it is
selected for the cycle. If not, an impasse occurs and a
substate is created in which more deliberate reasoning can
occur, including task decomposition, planning and search
methods.

Once an operator is selected, rules sensitive to its
selection perform its actions by modifying working
memory. An action can be an internal reasoning step, a
query to SVS, a retrieval from episodic or semantic
memory, or an external motor command. Operators in Soar
correspond conceptually to STRIPS operators; however, in
Soar, the component parts of operators (preconditions and
actions) are decomposed into individual rules, providing
disjunction preconditions and disjunctive conditional
actions. In addition, Soar has task-dependent rules for
operator evaluation, providing context-dependent and fine-
grain control of operator selection and application.

In Soar, complex behavior arises not from complex,
preprogrammed plans or sequential procedural knowledge,
but instead from the interplay of the agent’s knowledge
and the dynamics of the environment on each primitive
cycle. It is the speed of that cycle that determines agent
reactivity. Based on our experience and informed by the
human cognitive system, the maximum time per cycle
must be below 50-100 msec. for an agent to maintain
reactivity. Unfortunately, in most cognitive architectures
the basic cognitive cycle can be much longer, which
greatly complicates their integration with real time
perceptual and motor systems. In contrast, Soar’s cycle is
consistently below 50 msec. and averages below 1 msec.
on commodity computer hardware (Laird et al. 2010).

Mobile Robot Control in Soar
In this section, we describe how Soar controls a small
custom-built robot that uses a mixture of real-world and
virtual sensors to navigate an office building. The robot

can move forward and backward, and turn in place. It has a
LIDAR mounted in the front that gives distances to 180
points throughout 180 degrees that it uses for obstacle
avoidance. The robot can sense its own location based on
odometry, and it can also sense the room it is in, the
location of doors and walls, and different types of objects.
These additional sensors are simulated, and when
controlling the real robot, the agent receives a synthesis of
real and simulated sensor data. During a run, there are
approximately 150 sensory data elements. The Soar agent
interfaces to the robot through the Lightweight
Communications and Marshalling (LCM) library for
message passing (Huang, Olson, & Moore, 2010).

The evaluation described below uses a simulation
because of the difficulties in running long experiments in
large physical spaces. The simulation is quite accurate and
the Soar agent used in the simulation is exactly the same as
the agent used to control the real robot.

The agent performs multiple tasks, including exploring,
cleaning rooms, and patrolling. A typical mission will
involve initial exploration, followed by room cleaning, and
then patrolling once all rooms are cleaned. Figure 2 shows
a partial trace of the agent’s explorations at the beginning
of a mission. In room cleaning, the agent picks up and
moves specific types of blocks (such as square green
blocks), one by one, to a storage room. The agent
dynamically constructs a map of the rooms, doorways, and
their spatial and topological layout, as well as the locations
of all blocks, as it encounters them during exploration.

Figure 2. Partial trace of agent exploration.

48

The agent uses dynamic task decomposition and
abstraction planning as needed. For example, when
attempting to clean up by moving a block to the storage
room, the agent internally searches for a path to the storage
room using the map knowledge the agent has built up
through experience. The search is a variant of A*. The
internal search is performed within the agent, using rules,
spread across multiple cycles. Over time, planning is
converted into reactive selection knowledge through Soar’s
chunking learning mechanism.

As part of our research, we have investigated the costs
and tradeoffs of maintaining topological map information
in working memory versus semantic memory, as well as
using episodic memory for accessing historical data, such
as the most recent locations of specific objects (such as
when was the last time the agent saw a blue block). One
issue is that it is easier and faster to access map data if it is
maintained in working memory instead of semantic
memory because semantic memory requires explicit
retrievals. However, the time to access and reconstruct
prior episodes from episodic memory increases as working
memory grows in size. Thus, there are tradeoffs in
maintaining the map in working memory versus semantic
memory.

Figure 3 shows the results of an experiment where the
robot explored the map in Figure 2, periodically accessing
episodic memory to retrieve historical information. The x
axis is time in seconds, where the agent runs for one hour
(3600 seconds). The y axis is the maximum time for a
processing cycle in msec. There are five sets of data. The
first is from maintaining the map in working memory. This
shows significant slowdown because of the growth in
working memory and its interaction with episodic memory.
The second is from maintaining the map in semantic
memory but including task dependent knowledge to
deliberately remove duplicate map information, which
greatly decreases the average size of working memory and
maintains reactivity. The next three data sets are agents
where the map is also maintained in semantic memory, but
where elements in working memory are automatically

removed based on activation, which decays over time. The
data sets differ in terms of the rate of decay. The graph
shows that with a decay rate of .5, the automatic
mechanism performs as well or better than the deliberate
mechanism (decay rates higher than .5 cause the agent to
thrash as it is unable to maintain sufficient internal state for
planning).

Extending Mobile Robot Control with SLAM
In the previous section, the agent used its real sensory
system only for obstacle avoidance, and depended upon a
simulation to provide it with symbolic descriptions of its
local topography. While ground truth data may be known
within simulation, real world operation requires algorithms
capable of processing the inherent error found within
sensor measurements. In this section, we describe how we
extended the agent by incorporating simultaneous
localization and mapping (SLAM) into the agent, so that
the agent builds up its own representations of rooms and
doorways from scratch. Although one could imagine
incorporating SLAM into SVS, in this case, a separate
module builds up the appropriate data and then feeds it to
working memory. Soar maintains control of the robot, and
the SLAM process runs in the background as the robot
moves through its environment.

Our mapping system uses wheel encoders to provide
movement information, and LIDAR to provide
environmental information. In order to deal with
measurement error inherent in both sensors, a solution to
the least-squares SLAM formulation known as square root
smoothing and mapping (SAM) is employed (Dellaert &
Kaess, 2006). This algorithm provides the system with a
state estimation of the robot’s movement throughout the
environment. The sensor observations also provide the
necessary data to detect gateways adjoining unique areas.
Using the SLAM state estimation, a better approximation
of the location of gateways can be retrieved and added to
the SLAM map for future gateway data association.
Additional algorithms were developed for finding
doorways. Together, these algorithms allow for a
topological representation of the environment to be built
incrementally. A key feature of the algorithms is that they
build up symbolic, topological descriptions of rooms and
doorways, and are able to detect when two doorways are in
fact the same one, just sensed from different rooms.

Figure 4 show a trace of the agent as it explores a test
environment generated via solving the SLAM problem.
The poses of the robot (red) are connected via constraint
edges (green) recovered through LIDAR scan matching.
The ground truth movement of the robot is shown in
yellow, whereas the raw odometry movement is in black.
A detailed description of the underlying implementation is
beyond the scope of this paper and available from Kinkade
(2012). The software is based in part on the April Robotics
toolkit provided by Edwin Olson.

��

���

���

���

���

���

	��

��

���

�� 	��� ����� ����� ����� ����� �	����
��
���
�	

�
��

�
��
�

�
��
��
��

�
��
�

�

	
��
�

���������
������
	�����

�
������

�
����������������
������

�
������������
������

�
������������
������

�
������������
������

Figure 3. Maximum processing time per decision for agents
that explore the map in Figure 2 using different memory

49

This integration demonstrates how it is possible to use
special-purpose sensor processing systems with Soar.
Future work includes creating a tighter integration with
SVS as well as investigating how map information
maintained in the SLAM system can be more directly
shared with the map representations in Soar.

Learning Continuous and Relational Models
In the robot domain described in the previous section, the
agent was able to perform its tasks effectively by moving
toward landmark values in its continuous state
representation, such as when its relative bearing to a
waypoint was close to 0.0, and using symbolic actions such
as move forward and turn left/right. The agent’s procedural
knowledge implicitly encoded a simple model of how the
continuous state properties change under a certain action,
e.g. turning left will lower the relative bearing to the
waypoint. A more general agent must be able to perform in
novel continuous domains where actions are continuous
rather than discrete, and where the agent has no a priori
knowledge of how these continuous actions change the
state. In these cases, the agent can speed learning and
improve the robustness of its behavior by learning a model
of how continuous state properties change with continuous
actions. We call these continuous models.
 The success of the robot agent was also dependent upon
its ability to plan at the abstract level of rooms and
navigating between rooms. This abstraction reduced the
plan space by orders of magnitude from the level of turning
and driving. Furthermore, casting the world into symbolic
relational structures allowed the agent to employ universal
weak methods such as look-ahead search and means-ends
analysis to solve the problem. Being able to reason at the
abstract level requires not only a mapping from concrete
continuous states into abstract symbolic states, but also a
model of how the abstract state changes in response to
actions. We call these relational models.

 In this section, we describe how SVS learns continuous
and relational models, how continuous models are used by
a controller for generating continuous plans that implement
relational actions, and how these components allow the
agent to automatically learn and plan in relational
abstractions. Figure 5 gives an overview of this system.

Continuous Model Learning
Formally, the continuous model is a function � �� � � �,
where � and � vectors of real numbers representing the
continuous properties of the starting and resultant states are
encoded by the SVS scene graph, and � is the continuous
action. In the robot domain, the state vectors include the (x,
y, z) coordinates of all objects as well as the robot’s
velocity and rotation rates of the wheels. We assume that
all properties that play a role in environment dynamics are
observable (there is no hidden state). The robot’s
continuous action � is a pair of real-numbered motor
voltages to the left and right wheels.
 In the object-oriented spatial environments that SVS was
designed for, objects often exhibit qualitatively distinct
behaviors based on their interactions with other objects.
For example, a ball flying through the air follows a
parabola, but upon contacting the ground it abruptly
changes to a bouncing trajectory. The continuous model
our system learns is composed of a set of linear functions
and a classifier that determines which function to use for a
particular state. The linear functions capture the individual
qualitative behaviors, while the classifier determines which
behavior is being exhibited. Figure 6 depicts the prediction
process. To make a prediction starting in state � and taking
action � (�), the model first calculates a spatial predicate
description � (�) of the starting state �. � is a vector of the
values of all spatial predicates that can describe the
environment. A decision tree (�) in which the nodes test

Figure 6. Prediction with continuous model.

Figure 5. Overview of models and abstraction.

Figure 4. Trace of robot exploring rooms using SLAM.

50

the values of single predicate classifies � into one of
several qualitative behaviors. For example, states where a
ball is in free-fall may be classified under one behavior,
states where the ball is contacting the ground under
another. Next, the linear function (�) associated with the
behavior is used to predict precisely how � will change in
response to � (�). This two-level approach is similar to
several existing systems (Quinlan 1992, Toussaint &
Vijayakumar 2005). The important difference is that
classification is based on position-independent spatial
relationships rather than splitting the input space into
contiguous regions, leading to more general models.
 Model learning occurs in the opposite order. Given a
training instance ��� �� ��, the model learner first uses
Expectation-Maximization to simultaneously determine
which qualitative behavior generated the instance and also
learn the parameters of the associated linear function. Once
the instance is assigned to behavior q, the predicate
description � of � is calculated. The pair ��� �� is then used
as a training instance for the decision tree classifier.

Relational Abstraction and Model Learning
Previously, we had described how the symbolic agent can
query SVS’s scene graph for the truth values of spatial
predicates such as “left-of(robot, block1).” This is the
primary method of abstracting from continuous to
relational state.
 For a complete abstraction, the agent must be able to
perform relational actions that can change the state. We
define these relational actions to be changes to single
predicate values, such as “Make contacting(A, B) true.”
SVS has a controller module that operationalizes these
relational actions into trajectories of continuous actions
sent to the environment. For example, when the agent
performs the relational action “Make contacting(robot,
block1) true,” the controller will use greedy or random-tree
search techniques to find a sequences of motor voltages
that will drive the robot to block1. The controller uses the
learned continuous models when performing these look-
ahead searches. Note that although relational actions are
associated with single predicate changes, additional
predicates may change as side effects, or the controller
may fail to find a suitable trajectory, and no predicates will
change at all. For example, executing “Make
contacting(robot, block1) true” may result in making
contacting(robot, block2) false.
 With the abstraction in place, the agent can learn a
model of how the relational state changes in response to
relational actions, allowing it to plan completely at the
relational level. Our system uses an instance-based
learning method to capture these behaviors. For every
decision cycle in which at least one predicate changes
value, the relational state is stored as an episode in episodic
memory. To make a prediction for a starting relational state
� and relational action �, the agent queries episodic
memory for an episode that is most similar to � in which it
also performed �. Similarity is measured as the degree to
which the predicate structures of two relational states align,

discounting object identities. The predicate changes that
were recorded in episodic memory for the retrieved state
are then mapped into the starting state to form a prediction.
Note that because similarity is based on relational structure
rather than object identity, the training episodes generalize
to novel states using a form of analogical mapping. This
work is described in more detail in Xu & Laird (2010).
 To summarize, SVS provides a symbolic representation
of the continuous environment state, and grounds desired
predicate changes into continuous action trajectories. The
continuous model learner learns how continuous actions
change the continuous state. This model allows the
controller to plan continuous trajectories that implement
relational actions. The relational model learner learns how
relational actions affect the abstract relational state,
allowing the agent to create abstract plans. These methods
enable Soar agents to autonomously transition from having
minimal domain knowledge to being able to plan with
relational abstractions in novel continuous domains.

Situated Interactive Instruction
Our final section addresses the issue of how a robotic agent
can learn from interaction with a human. Much of the prior
research on robot learning from human interaction has
focused on learning from demonstration, imitation, and
observation. Although these methods can be useful, they
are not efficient for communicating the hierarchical goal
structures that are often needed for complex behavior.
 Our approach is to focus on natural language instruction
(Huffman & Laird, 1995), where the agent is actively
trying to perform the associated task while receiving
instruction. The approach we are pursuing has the
following characteristics:
1. Situated: Instructions are grounded in particular

situations, with specific objects, eliminating many
forms of ambiguity. The instructor does not need to
come up with general rules or procedures.

2. General: The instruction mechanism is general and can
be applied to any type of missing knowledge, including
object identification and categorization, labeling objects
with words, learning action models, or labeling actions.

3. Interactive: When the agent’s knowledge is insufficient
to make progress on a task, or the instructions are
incomplete or ambiguous, the agent can ask for help. In
a mixed control setting, the instructor can ask the agent
for information regarding its state and the environment,
verify an agent's learning by questioning the agent, and
provide corrections.

4. Knowledge-level interaction: The instructor provides
knowledge to the agent by referring to objects and
actions in the world, not the agent's internal data
structures and processes.

To explore the potential of learning with situated
instructions, we are developing a robotic agent that learns
new nouns, adjectives, prepositions, and verbs in a simple
real world table top robotic environment. There is a single
robot arm that can pick up colored foam blocks, and there
is an overhead Kinect camera, with associated software for

51

segmenting the imaging and extracting color, shape, and
size information about the objects. To learn nouns and
adjectives, the agent must learn to associate linguistic
forms (words such as red) to perceptual features (RGB
values). The agent acquires prepositions by associated
linguistic descriptions (to the right of) provided by
interactive instruction with a set of spatial primitives.
 The new verbs are learned by generalizing from a
situated example execution. The instructor leads the agent
through an example of a composite action (move) which is
a composition of pick-up and put-down actions. The agent
uses explanation based generalization (chunking) to learn a
general execution of move. In order for this type of
instruction to work, the agent must have a pre-existing set
of primitive actions that are known to the instructor.

Below is a painfully brief overview of the processing
steps involved in situated interactive instruction.
1. Task Performance: The agent attempts to perform a

task using existing linguistic, procedural, semantic,
and spatial knowledge.

2. Detection: The agent detects that its available
knowledge is incomplete (and impasse arises).

3. Retrieval: The agent attempts to retrieve prior
instructions from episodic or semantic memory that
are relevant to the current situation. If successful, goes
directly to steps 6 and 7.

4. Acquisition: The agent requests help from the human,
who instructs the agent. The agent creates a
declarative representation of the instructions in its
short-term memory, which is automatically stored in
episodic memory.

5. Comprehension: The agent maps the instructions to
the current situation, making connections between the
words in the instructions and perceived objects and
actions. If comprehension fails, possibly because of
ambiguous instruction, further instruction is requested.

6. Execution: The agent executes the action, which may
involve a change to the agent’s internal state (such as
associating a label with an object) or performing an
action in the world.

7. Retrospective Reflection: Following execution, the
agent can reflect back to understand what went right or
what went wrong with the instructions. This is an
internal debrief that allows the agent to review and
further generalize and learn from its experiences.

The agent learns nouns and adjectives by storing
associations between the words and perceptual features in
semantic memory. Prepositions are acquired by
deliberately storing associations between linguistic forms
that describe spatial relationships between objects to the
spatial primitives extracted by the spatial visual system
(and then refining this set through additional experience.)

For learning verbs and associated actions, the agent
simulates the instructions on an internal model to verify
that it understands why it is performing the instructions,
which allows the agent to generalize the instruction to
future situations, reducing the need for future instruction.

As a side effect of execution, Soar compiles the processing
(via chunking) into new rules that avoid future impasses.

Interaction Model
One of the challenges of interactive instruction is that the
agent must maintain a representation of the state of
interactions with the instructor while acting in the
environment, and then learn from the instructions in the
context in which they were provided. Thus, the agent needs
a model of task-oriented interaction. Such a model is
required to support the properties described below.
1. Both the instructor and the agent can assume control

of the interactions at any time.
2. The interaction model provides a context for

instructor's elicitation, allowing the agent to take
relevant actions.

3. The interactions by the agent should be informed by
agent's reasoning, learning, and acting mechanisms.

4. The interaction model and the sequence of interactions
should inform agent's learning.

The interaction model we use has been adapted from Rich
and Sidner (1998). It captures the state of task-oriented
interaction between the agent and the instructor. To
formalize the state of interaction, we introduce (1) events
that change the state of interaction; these include dialog
utterances, actions, and learning, (2) segments that
establish a relationship between contiguous events, and (3)
a focus-stack that represents the current foci of interaction.
 In accordance with the discourse interpretation
algorithm described by Rich and Sidner (1998), each event
changes the focus-stack by, (i) starting a new segment
whose purpose contributes to the current purpose (and
thus, pushing a new segment with a related purpose on the
focus stack), (ii) continuing the current segment by
contributing to the current purpose, (iii) completing the
current purpose (and thus eventually popping the focus
stack) or (iv) starting a new segment whose purpose does
not contribute to the current purpose (and thus pushing a
new, interrupting segment on the focus-stack, changing the
purpose of the interaction). An event contributes to a
segment, if (i) it directly achieves the purpose, and (ii) it is
a step in achieving the purpose.

Results
Using the approach described above. The robotic agent
acquires new adjectives such as red and small and nouns
such as triangle, rectangle, and arch for novel objects.
Typically, the agent requires a few interactions and
situated examples of objects to acquire these linguistic
forms. After learning, the agent can classify novel objects
along the dimensions previously observed and can
associate correct nouns and adjectives to them. The
learning is verified by asking questions such as “Which is
the blue rectangle?”
 To teach novel prepositions and prepositional phrases
(such as to the right of), the agent is provided with
examples of objects that satisfied the desired spatial

52

relationships along with the phrase via interaction. The
learning is verified by arranging objects and querying the
agent using questions like “Which object is to the right of
the blue rectangle.” The agent is the able to provide
appropriate answers to such questions.
 The agent can also be taught a new verb, such as move,
by leading it through a situated execution of the composite
action. The example execution involves picking up a blue
rectangle and placing it at the desired position. Through
internal explanation, the agent learns a general execution
of move, and is able to execute other instances of move, but
with different arguments, such as move a red rectangle.
 The learning is embedded within the interaction and
action execution framework. The instructor can ask the
agent to perform an action, or describe an object. When the
agent encounters unknown words, such as “Pick up the red
triangle,” where either “red” or “triangle” are undefined,
the agent engages the instructor in an interactive dialog to
learn the unknown words.

Conclusion
The purpose of this paper was to describe how the Soar
cognitive architecture supports creating flexible and
adaptive cognitive robotic agents. It incorporates both
symbolic and non-symbolic processing, has multiple
learning mechanisms, and has been applied to multiple
robotic systems. Each of the areas we presented is an
active research project, and there is much to be done on
them individually. In addition, one obvious place for future
work is their integration.

A second place for future research is to push further on
the interaction between low-level perception and high-level
cognition. SVS provides one level of processing where
these come together, but as of yet, we do not have a
general theory (or implementation) of adaptive low-level
perception that translates noisy pixels into object
descriptions, categories, features, and spatial relations.

Acknowledgments
The work described here was supported in part by the
Defense Advanced Research Projects Agency under
contract HR0011-11-C-0142 and by the Office of Navy
Research under grant number N00014-08-1-0099. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressly or
implied, of the DARPA, ONR, or the U.S. Government.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., Qin,
Y. (2004). An Integrated Theory of the Mind. Psychological Review, 111
(4), 1036-1060.
Benjamin, P., Lonsdale, D., and Lyons, D. (2006). Embodying a
Cognitive Model in a Mobile Robot, Proceedings of the SPIE Conference
on Intelligent Robots and Computer Vision.

Benjamin, P., Lonsdale, D., and Lyons, D. (2007). A Cognitive Robotics
Approach to Comprehending Human Language and Behaviors.
Proceedings of the 2nd ACM/IEEE International Conference on Human-
Robot Interaction, 185-192.

Benjamin, P., Lyons, D., and Lonsdale, D. (2004). Designing a Robot
Cognitive Architecture with Concurrency and Active Perception,
Proceedings of the AAAI Fall Symposium on the Intersection of Cognitive
Science and Robotics.

Dellaert F. and Kaess, M. (2006). Square Root SAM: Simultaneous
Localization and Mapping via Square Root Information Smoothing,
International Journal of Robotics Research. 25 (12) 1181-1203.
Huang, A., Olson, E., and Moore, D. (2010). LCM: Lightweight
Communications and Marshalling, Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Huffman, S. B., and Laird. J. E. (1995). Flexibly Instructable Agents,
Journal of Artificial Intelligence Research, 3, 271-324.

Kinkade, K. R. (2012). Cooperative SLAM of Local and Topological
Features for Soar Robot Agents, Technical Report of the Center for
Cognitive Architecture, University of Michigan.
Kosslyn, S. M., Thompson, W. L., and Ganis, G. (2006). The case for
mental imagery. New York, New York: Oxford University Press.

Laird, J. E. (2012). The Soar Cognitive Architecture, MIT Press.
Laird, J. E., Derbinsky, N., Voigt, J. R. (2011). Performance Evaluation
of Declarative Memory Systems in Soar. Proc. of the 20th Behavior
Representation in Modeling and Simulation Conf. 33-40.

Laird, J. E., Hucka, M., Yager, E., and Tuck, C. (1991). Robo-Soar: An
integration of external interaction, planning, and learning, using Soar,
IEEE Robotics and Autonomous Systems. 8(1-2), 113-129.
Laird, J. E., and Rosenbloom, P. S., (2000). Integrating execution,
planning, and learning in Soar for external environments, Proceedings of
the National Conference of Artificial Intelligence, 1022-1029.

Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures:
Research issues and challenges, Cognitive Systems Research, 10(2), 141-
160.
Lathrop, S. D., Wintermute, S., Laird, J. E. (2011), Exploring the
Functional Advantages of Spatial and Visual Cognition from an
Architectural Perspective. Topics in Cognitive Science, 3, 796-818.

Marinier, R., Laird, J. E., and Lewis, R. L. (2008). A Computational
Unification of Cognitive Behavior and Emotion. Journal of Cognitive
Systems Research.
Quinlan, J. R. (1992). Learning with Continuous Classes. Proceedings of
5th Australian Joint Conference on Artificial Intelligence. Singapore. 343-
348.

Rich, C., and Sidner, C. 1998. COLLAGEN: A Collaboration Manager
for Software Interface Agents. User Modeling and User-Adapted
Interaction.
Toussaint, M., and Vijayakumar, S. (2005). Learning Discontinuities with
Products-of-Sigmoids for Switching between Local Models. Proceedings
of the 22nd International Conference on Machine Learning, 904-911.

Wintermute, S. (2009). Integrating Reasoning and Action through
Simulation, Proceedings of the Second Conference on Artificial General
Intelligence.
Wintermute, S. (2010). Abstraction, Imagery, and Control in Cognitive
Architecture. Ph.D. Thesis, University of Michigan, Ann Arbor.

Wintermute, S. and Laird, J. E. (2008). Bimodal Spatial Reasoning with
Continuous Motion, Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, Chicago, Illinois.

53

Xu, J. Z., Laird, J. E. (2010). Instance-Based Online Learning of
Deterministic Relational Action Models. Proceedings of the 24th AAAI
Conference on Artificial Intelligence. Atlanta, GA.

Xu, J. Z., Laird, J. E. (2011). Combining Learned Discrete and
Continuous Action Models. Proceedings of the 25th AAAI Conference on
Artificial Intelligence. San Francisco, CA.

54

