COMP9444
Neural Networks and Deep Learning

3. Backpropagation

Textbook, Sections 4.3, 5.2, 6.5.2
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Outline

Supervised Learning
Ockham’s Razor (5.2)
Multi-Layer Networks
Gradient Descent (4.3, 6.5.2)
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Types of Learning

Supervised Learning

agent 1s presented with examples of inputs and their target outputs

Reinforcement Learning

agent is not presented with target outputs, but is given a reward

signal, which it aims to maximize

Unsupervised Learning

agent 1s only presented with the inputs themselves, and aims to
find structure in these inputs
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Supervised Learning

we have a training set and a test set, each consisting of a set of items;
for each item, a number of input attributes and a target value are
specified.

the aim 1s to predict the target value, based on the input attributes.

agent 1s presented with the input and target output for each item in the
training set; it must then predict the output for each item in the test set

various learning paradigms are available:

Neural Network
Decision Tree

Support Vector Machine, etc.
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Supervised Learning — Issues

framework (decision tree, neural network, SVM, etc.)
representation (of inputs and outputs)

pre-processing / post-processing

training method (perceptron learning, backpropagation, etc.)
generalization (avoid over-fitting)

evaluation (separate training and testing sets)
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Curve Fitting

Which curve gives the “best fit” to these data?

f(x)
\

= X
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Curve Fitting

Which curve gives the “best fit” to these data?

f(x)
\

= X
straight line?
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Curve Fitting

Which curve gives the “best fit” to these data?

f(x)
\

= X
parabola?
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Curve Fitting

Which curve gives the “best fit” to these data?

J(x)
\

> X

4th order polynomial?
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Curve Fitting

Which curve gives the “best fit” to these data?

J(x)
\

L
//

ral(ll
L'}""'f N .

Something else?
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Ockham’s Razor

“The most likely hypothesis 1s the simplest one consistent with the data.”

inadequate good compromise over-fitting

Since there can be noise in the measurements, in practice need to make a

tradeoff between simplicity of the hypothesis and how well it fits the data.
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Outliers
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Butterfly Ballot
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Recall: Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I, A I, I,
10 . @ g 11 o 11 O
?
00 O—=.. 00——@—> 00 o—
0 1 L~ 0 1L 0 1 L
(@ I, and I, (b) I, or \12 ) I, xor I,

Possible solution:

x1 XOR x can be written as: (x; AND x;) NOR (x; NOR x»p)
Recall that AND, OR and NOR can be implemented by perceptrons.
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Multi-Layer Neural Networks

XOR
()
/\I O&
@ (O
AND NOR +0.5

Problem: How can we train it to learn a new function? (credit assignment)
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Two-Layer Neural Network

Output units a;
Wi

Hidden units a;
W)

Input units aj

Normally, the numbers of input and output units are fixed,
but we can choose the number of hidden units.
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The XOR Problem

X1 Xxp | target
0O O 0
0 1 1
I 0 1
1 1 0

for this toy problem, there is only a training set; there is no validation
or test set, so we don’t worry about overfitting

the XOR data cannot be learned with a perceptron, but can be
achieved using a 2-layer network with two hidden units
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Neural Network Equations

up =

yi =

17

b1 +wi1x1 +wix2

g(uy)
C+Viy1r +Vvay2

g(s)
Y1)

We sometimes use w as a shorthand for any of the trainable weights

{c,vi,va,b1,b2, w11, W21, W12, W22 }.
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NN Training as Cost Minimization

We define an error function E to be (half) the sum over all input patterns
of the square of the difference between actual output and desired output

If we think of E as height, it defines an error landscape on the weight
space. The aim is to find a set of weights for which E is very low.
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Backpropagation

Local Search in Weight Space

A

Cost
function

Current
State

/

~flat” Local
Minimum
Shoulder Local Minimum
__—— Global Minimum

State Space

Problem: because of the step function, the landscape will not be

smooth but will instead consist almost entirely of flat local regions and

“shoulders”, with occasional discontinuous jumps.
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Key Idea

+1| —_— +1

(a) Step function (b) Sign function (c) Sigmoid function

Replace the (discontinuous) step function with a differentiable function,
such as the sigmoid:

1
or hyperbolic tangent
e’ —e® 1
g(S) = tanh(S) = m = 2(m) — 1
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Gradient Descent (4.3)

Recall that the error function E is (half) the sum over all input patterns
of the square of the difference between actual output and desired output

E = 5 Z(Z — t)z
The aim 1is to find a set of weights for which E is very low.

If the functions involved are smooth, we can use multi-variable calculus
to adjust the weights in such a way as to take us in the steepest downhill

direction.

oE

Parameter 1 is called the learning rate.
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Chain Rule (6.5.2)

If, say
y = y(u)
u = u(x)
Then
dy dy du
ox Ou Ox

This principle can be used to compute the partial derivatives in an
efficient and localized manner. Note that the transfer function must be
differentiable (usually sigmoid, or tanh).

1
Note: if z(s) = = 7(s)=2z(1-2).

if z(s) = tanh(s), Z(s)=1-2°.
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Forward Pass

COMPY444

Backpropagation

up =

yi =

b1 +wiix1 +wizx;

g(uy)
C+Viy1r +Vvay2

g(s)
NG
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Backpropagation

Partial Derivatives

OE t

Jdz <

dz ,

R — (1 —
N (OEE (e
s

ayl B :

dyi

AT 1 —

o yi(l—=y1)

Backpropagation 24

Useful notation

oE oE oE
Oout = = 51—a—u1 52—a—u2
Then

8out — (Z_I)Z(l_z)

oE

a_vl = Qout V1

01 = OouViyi (I —y1)

oE

Wll = 81 X1

Partial derivatives can be calculated efficiently by packpropagating deltas

through the network.
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Two-Layer NN’s — Applications

Medical Dignosis
Autonomous Driving

Game Playing

Credit Card Fraud Detection
Handwriting Recognition

Financial Prediction
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Example: Pima Indians Diabetes Dataset

COMPY444

Class variable (0 or 1)

Attribute mean stdv
I. Number of times pregnant 3.8 3.4
2. Plasma glucose concentration 120.9  32.0
3. Diastolic blood pressure (mm Hg) 69.1 19.4
4. Triceps skin fold thickness (mm) 20.5 16.0
5. 2-Hour serum insulin (mu U/ml) 79.8 115.2
6. Body mass index (weight in kg/(height in m)?) | 32.0 7.9
7. Diabetes pedigree function 0.5 0.3
8. Age (years) 33.2 11.8
0.
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Training Tips

re-scale inputs and outputs to be in the range O to 1 or —1 to 1
replace missing values with mean value for that attribute
initialize weights to very small random values

on-line or batch learning

three different ways to prevent overfitting:
limit the number of hidden nodes or connections
limit the training time, using a validation set

weight decay

adjust learning rate (and momentum) to suit the particular task
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Overfitting in Neural Networks

Error versus weight updates (example 1)
0.01 . T T
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Validation set error +
0.008 7

0.007
0.006
0.005
0.004
0.003
0.002

Error

0 5000 10000 15000 20000
Number of weight updates

Note: x-axis could also be number of hidden nodes or connections
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Overfitting in Neural Networks

Error versus weight updates (example 2)
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ALVINN (Pomerleau 1991, 1993)
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ALVINN

Straight
Ahead

30 Output
Units

30x32 Sensor
Input Retina
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ALVINN

Autonomous Land Vehicle In a Neural Network

later version included a sonar range finder
8 x 32 range finder input retina

29 hidden units
45 output units

Supervised Learning, from human actions (Behavioral Cloning)

additional “transformed” training items to cover emergency
situations

drove autonomously from coast to coast
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Summary

Neural networks are biologically inspired
Multi-layer neural networks can learn non linearly separable functions

Backpropagation is effective and widely used
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