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MNIST Handwritten Digit Dataset
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black and white, resolution 2828

60,000 images

10 classes (d,2,3,4,5,6,7.8,9)
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CIFAR Image Dataset

airplane automobile bird deer

color, resolution 3% 32
50,000 images
10 classes
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ImageNet LSVRC Dataset

color, resolution 22% 227
1.2 million images
1000 classes
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Image Processing Tasks

Image classification
object detection
object segmentation
style transfer
generating images
generating art

Image captioning
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Object Detection
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LeNet trained on MNIST

C3: 1. maps 16&@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

6@28x28
32x32 52: . maps CS:layer pg. jayer OQUTPUT
84 10

S |T_ r'_r
i

| | Full mnAamian | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

The 5x 5 window of the first convolution layer extracts from the angj

32x 32 image a 2& 28 array of features. Subsampling then halves this
size to 14x 14. The second Convolution layer uses anotheB5rvindow

to extract a 1< 10 array of features, which the second subsampling layer
reduces to & 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the digit$d '9’.
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ImageNet Architectures

AlexNet, 8 layers (2012)
VGG, 19 layers (2014)
GoogleNet, 22 layers (2014)
ResNets, 152 layers (2015)
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AlexNet Architecture
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5 convolutional layers + 3 fully connected layers
max pooling with overlapping stride

softmax with 1000 classes

2 parallel GPUs which interact only at certain layers
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AlexNet Detalls

224

5 ? W
1 Y. 57s \d
28 2048 2048 \Uense

dense dense

1000

128 Max 1 ||
Max 178 Max pooling 294 2048
pooling pooling

3 48

650K neurons

630M connections

60M parameters

more parameters that imagesdanger of overfitting
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Enhancements

Rectified Linear Units (ReLUSs)

overlapping pooling (width= 3, stride= 2)

stochastic gradient descent with momentum and weight decay
data augmentation to reduce overfitting

50% dropout in the fully connected layers
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Data Augmentation

ten patches of size 224224 are cropped from each of the original
227x 277 images (using zero padding)

the horizontal reflection of each patch is also included.
at test time, average the predictions on the 10 patches.

also include changes in intensity to RGB channels
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Convolution Kernels

filters on GPU-1 (upper) are color agnostic

filters on GPU-2 (lower) are color specific

these resemble Gabor filters

COMP9444
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Dealing with Deep Networks

> 10 layers
weight initialization
batch nomalization

> 30 layers
skip connections

> 100 layers
Identity skip connections
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Statistics Example: Coin Tossing

Example: Toss a coin once, and count the number of Heads
Mean | =3(0+1) = 05
Variance = 3((0-0.5)%2+(1-0.5)?)) =0.25
Standard Deviatioro = +/Variance= 0.5

Example: Toss a coin 100 times, and count the number of Heads

Mean L =100x0.5 =50
Variance = 100 0.25=25
Standard Deviatioro = +/Variance=5

Example: Toss a coin 10000 times, and count the number ofdHead
U= 5000 o = +v/2500 =50
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Statistics
The mean and variance of a setnidamples(y, ..., x, are given by

Meanx| =

Var

DIH DIH

n

; 1 n

Z xx — Mear(x])? (ﬁ
n

If wi, X are independent angd= Y wgxx then
k=1

Varly| = nVar|w|Var|x]

COMP9444 ©Alan Blair, 2017-18

16



COMP9444 18s2 Image Processing 17

Welight Initialization

Consider one layer ) of a deep neural network with Weightwj(li()

connecting the activations{xf:)}1§k§ni at the previous layer to
{X§I+1)}1§j§ni+1 at the next layer, wherg() is the transfer function and

: : N L
47 = gtsuni’) = o3 wi'x!)

Then - i i
Var[sum' ] = nVarwMvar[x(V]

WhereGg is a constant whose value is estimated to take account of the
transfer function.

If some layers are not fully connected, we replacevith the average
numbem!" of incoming connections to each node at laiyerl.
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Welight Initialization

If the nework ha® layers, with inpux = XV and outpuz = x(P*+1) then

Var(Z| ( |_l Goni" Var[w ) Var(x]

When we apply gradient descent through backpropagatienifferen-
tials will follow a similar pattern:

6

Var - (|‘lG 1 nPUVar(w ()])Var[ 0

Oz]

In this equationn® is the average number of outgoing connections for
each node at layer andG; is meant to estimate the average value of the
derivative of the transfer function.

For Rectified Linear Units, we can assufg= G; =

NI

COMP9444 ©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 19

Welight Initialization

In order to have healthy forward and backward propagatiaah éerm in
the product must be approximately equal to 1. Any deviatromfthis
could cause the activations to either vanish or saturatethendifferentials
to either decay or explode exponentially.

D . (i
\V/ ~ Goni"V ) Vi
ar(Z| (i[L ohy Varjw ]) ar(x|
Var[g—x] ~ (F Gy ”?“tvar[w(i)])var[g_z]

=1

We therefore choose the initial weigf{tw?k)} in each layeri( such that

GinP'varwl)] = 1
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Welight Initialization

085
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22-layer ReLU network (left)}; = 5 converges faster tha®, = 1

30-layer ReLU network (right); = % IS successful whil&s; =1
fails to learn at all
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Batch Normalization

We cannormalizethe activationsq((i) of nodek in layer () relative to the
mean and variance of those activations, calculated ovenabaich of
training items:

0 _ % —Mearix, |
0 _

Varx,
These activations can then be shifted and re-scaled to
Y|(<i) _ Bl(:) +yl(<i))2i(<i)

ij),yf(” are additional parameters, for each node, which are trdoged
backpropagation along with the other parameters (weightie network.

After training is complete, Meamg)] and Van[xf(i)] are either pre-computed
on the entire training set, or updated using running avetage
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Going Deeper

train error (%) test error (%)
20f 20¢
56-layer
56-layer
10f 101
20-layer
20-layer
0() l 2 3 4 5 6 00 1 2 3l 4 5‘ 6
iter. (1e4) iter. (1e4)

If we simply stack additional layers, it can lead to highairtimg error
as well as higher test error.
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Residual Networks

xl X

weight layer weight layer

anytwo
stacked layers l relu F(X) l relu

weight layer weight layer

identity
X

lrelu
H(x) Hx)=F(x)+x

Idea: Take any two consecutive stacked layers in a deep rieamad add a
“skip” connection which bipasses these layers and is adml#duetr output.
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Residual Networks

the preceding layers attempt to do the “whole” job, makirag close
as possible to the target output of the entire network

F (x) is a residual component which corrects the errors from previ
layers, or provides additional details which the previaysels were
not powerful enough to compute

with skip connections, both training and test error drop @s §dd
more layers

with more than 100 layers, need to apply RehEforeadding
the residual instead of afterwards. This is calleddantity skip
connection
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Dense Networks

Input

Dense Block 2
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Dense Block 3
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Prediction

‘horse”

Recently, good results have been achieved using netwotksdensely

connected blocks, within which each layer is connected loytstt

connections to all the preceding layers.

COMP9444

©Alan Blair, 2017-18

25



COMP9444 18s2

Texture Synthesis
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Neural Texture Synthesis

. pretrain CNN on ImageNet (VGG-19)
. pass input texture through CNN; compute feature mafor it" filter

at spatial locatiork in layer (depth)

. compute the Gram matrix for each pair of features

Gij = ZFiILFjlk

. feed (initially random) image into CNN

4
S.
6
7

compute L2 distance between Gram matrices of originahamdimage

. backprop to get gradient on image pixels

. update image and go to step 5.
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Neural Texture Synthesis

We can introduce a scaling facter for each layef in the network, and
define the Cost function as

L
Estyle— 21 Z

ZJ'J A'J

whereN;, M, are the number of filters, and size of feature maps, in |gyer
andG' A,' are the Gram matrices for the original and synthetic image.
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Neural Style Transfer
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content + style — new image

COMP9444

©Alan Blair, 2017-18



COMP9444 18s2

Neural Style Transfer
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Neural Style Transfer

For Neural Style Transfer, we minimize a cost function whgh

Etotal = O Econtent + B Estyle

Gij, Al
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content image, synthetic image

2@

i™" filter at positionk in layer|

number of filters, and size of feature maps, in layer
weighting factor for layet

Gram matrices for style image, and synthetic image
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