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MNIST Handwritten Digit Dataset CIFAR Image Dataset
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black and white, resolution 2828 color, resolution 3% 32
60,000 images 50,000 images
10 classes (@,2,3,4,5,6,7,8,9) 10 classes
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ImageNet LSVRC Dataset Image Processing Tasks

image classification
object detection
object segmentation
style transfer

generating images

generating art
color, resolution 22% 227
1.2 million images

1000 classes

image captioning
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Object Detection LeNet trained on MNIST

C3:f. maps 16@10x10
54:1. maps 16@5x5

C1: feature m
6@28x28 e
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Full conAaction | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

The 5x 5 window of the first convolution layer extracts from the dme)

32x 32 image a 2& 28 array of features. Subsampling then halves this
size to 14x 14. The second Convolution layer uses anotheBS5vindow

to extract a 10« 10 array of features, which the second subsampling layer
reduces to % 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the didit$d '9’.

7person 1).935
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ImageNet Architectures

AlexNet, 8 layers (2012)
VGG, 19 layers (2014)
GoogleNet, 22 layers (2014)
ResNets, 152 layers (2015)
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AlexNet Detalils

|- 3{ S
52 128 048 oas \dense
{ 13

- b
13 dense dense]|

1000

192 128 Max

Max 126 Max pooling
pooling pooling

650K neurons

630M connections

60M parameters

more parameters that imagesdanger of overfitting
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AlexNet Architecture

— 21 3‘ N
152 128 048 oag \dense
13

e
dense dense|

1000

192 128 Max

Max 128 Max pooling
pooling pooling

5 convolutional layers + 3 fully connected layers
max pooling with overlapping stride

softmax with 1000 classes

2 parallel GPUs which interact only at certain layers
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Enhancements

Rectified Linear Units (ReLUs)

overlapping pooling (width= 3, stride= 2)

stochastic gradient descent with momentum and weight decay
data augmentation to reduce overfitting

50% dropout in the fully connected layers
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Data Augmentation Convolution Kernels

ten patches of size 224224 are cropped from each of the original
227x 277 images (using zero padding)

the horizontal reflection of each patch is also included.

at test time, average the predictions on the 10 patches.

also include changes in intensity to RGB channels

filters on GPU-1 (upper) are color agnostic

filters on GPU-2 (lower) are color specific

these resemble Gabor filters
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Dealing with Deep Networks Statistics Example: Coin Tossing

Example: Toss a coin once, and count the number of Heads

> 10 layers Mean =1(0+1) =05
weight initialization Variance — 1((0-05)2+(1-05)?)) =0.25
batch nomalization Standard Deviatiors = v/Variance= 0.5
> 30 layers Example: Toss a coin 100 times, and count the number of Heads
skip connections Mean u — 10005 = 50
> 100 layers Variance =100x0.25=25
identity skip connections Standard Deviatioro = v/Variance=5

Example: Toss a coin 10000 times, and count the number of¢dead
p=5000Q o = /2500 =50

COMP9444 (©Alan Blair, 2017-18 COMP9444 (©Alan Blair, 2017-18



COMP9444 18s2 Image Processing 16

Statistics

The mean and variance of a setdamples, . .., X, are given by

Mear|x| = %kil)(k
Var[x] = % i(xk— Mear(x])? = (% i xf) — Mear{x|?

~
Il

1 k=1

n
If wy, X are independent ang= S wgX¢ then
k=1

Varly] = nVar[w]Var[x]
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Weight Initialization

If the nework had layers, with inputx = x(2) and outputz = x(P*, then
& i (i)
Var(z] ~ Gon" Varw'"] ) Var(x|
([ Gort™varw'"])

When we apply gradient descent through backpropagatierditferen-
tials will follow a similar pattern:

D
Var[g—x] ~ (B Gy n?”tVar[w(i)])Var[g—z]

In this equationn®“t is the average number of outgoing connections for
each node at layer andG; is meant to estimate the average value of the
derivative of the transfer function.

For Rectified Linear Units, we can assuf@g= G; = %
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Weight Initialization

Consider one layeri) of a deep neural network with Weighl\ﬂfli()

connecting the actiV<51tions{xf<i)}1§k§ni at the previous layer to
{X%I+1)}1§j§ni+l at the next layer, wherg() is the transfer function and

. . N
K = glsunt’) =g( y wilx!)

Var[sum’] = n;Varw(]varx(]
Var[x(#Y] ~ Gy Varjwt ] Var{x(!]

Then

WhereGg is a constant whose value is estimated to take account of the
transfer function.

If some layers are not fully connected, we replacevith the average
numbem}n of incoming connections to each node at laiyerl.
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Weight Initialization

In order to have healthy forward and backward propagatiach ¢erm in
the product must be approximately equal to 1. Any deviatiomfthis
could cause the activations to either vanish or saturatetrendifferentials
to either decay or explode exponentially.

D
Var(z ~ (u Go n}”Var[w(i)])Var[x]

1

(ﬁ Gy n?“tVar[W(i)]) Var| 0

Var[g—x] a—z]

We therefore choose the initial weigr{twﬂ()} in each layeri{ such that

Gin?varw)] = 1
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Weight Initialization

=== nVar[w] =1

22-layer ReLU network (left)z; = % converges faster tha®; = 1

30-layer ReLU network (right)3; = % is successful whil&, =1
fails to learn at all
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Going Deeper

train error (%) test error (%)

56-layer
56-layer

20-layer
20-layer

2 3 4
iter. (1e4)

If we simply stack additional layers, it can lead to higheiirimg error
as well as higher test error.
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Batch Normalization

We cannormalizethe activationS(S) of nodek in layer () relative to the
mean and variance of those activations, calculated ovenabaich of
training items: i "
g = X, —Mearix ']
varlx

These activations can then be shifted and re-scaled to

y|(<|) _ BS) +ykl>;(i(<l)
Bl((i),yl((i) are additional parameters, for each node, which are trdiged
backpropagation along with the other parameters (weidgtke network.

After training is complete, Meapqg)] and Va{xf(i)] are either pre-computed
on the entire training set, or updated using running average
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Residual Networks

anytwo
stacked layers F(X) identity
weight layer weight layer X
relu
H(x) Hx)=Fx)+x @

Idea: Take any two consecutive stacked layers in a deep rietwmd add a
“skip” connection which bipasses these layers and is adul#teir output.
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Residual Networks

Image Processing

the preceding layers attempt to do the “whole” job, makiras close
as possible to the target output of the entire network

F(x) is a residual component which corrects the errors from preyi

layers, or provides additional details which the previaysels were
not powerful enough to compute

with skip connections, both training and test error drop @s gdd

more layers

with more than 100 layers, need to apply RebEforeadding
the residual instead of afterwards. This is calleddantity skip

connection
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Dense Networks

Input

Recently, good results have been achieved using netwotksdensely
connected blocks, within which each layer is connected loytsht
connections to all the preceding layers.

Prediction

Dense Block 3
. 8 v0 vo vo

Dense Block 2
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Dense Block 1
U8 v0 vo vo
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Neural Texture Synthesis

1. pretrain CNN on ImageNet (VGG-19)

2. pass input texture through CNN; compute feature ﬁabﬁor ith filter
at spatial locatiork in layer (depth)

3. compute the Gram matrix for each pair of features
| el
Gjj = ZFiijk

. feed (initially random) image into CNN

4
5. compute L2 distance between Gram matrices of originahamdimage
6. backprop to get gradient on image pixels

7

. update image and go to step 5.
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Neural Texture Synthesis
We can introduce a scaling factey for each layet in the network, and
define the Cost function as

Estyle_ } : l Z(G-I- —Ail-)z
- i
4 I; N|2M|2 1] . .

whereN;, M, are the number of filters, and size of feature maps, in Igyer
andGi'j , Ai'j are the Gram matrices for the original and synthetic image.

COMP9444 (©Alan Blair, 2017-18

COMP9444 18s2 Image Processing 30

Neural Style Transfer
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Neural Style Transfer

content

COMP9444
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+ style — new image
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Neural Style Transfer

For Neural Style Transfer, we minimize a cost function whigh

Etotal = O Econtent + B Estyle

L
= 5 IRk RO+ g 3 G 3 (G A

where
X, X
Fik
N, M,
W

G, A

COMP9444

content image, synthetic image

it filter at positionk in layer|

number of filters, and size of feature maps, in layer
weighting factor for layet

Gram matrices for style image, and synthetic image
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