COMP9444
Neural Networks and Deep Learning

17. Course Review

COMP9444 18s2 Review

Assessment

Assessment will consist of:

Assignments 40%
Written Exam 60%

In order to pass the course, you must score

at least 16/40 for the assignments
at least 24/60 for the written exam

a combined mark of at least 50/100

COMPY444

(©Alan Blair, 2017-18

COMP9444 18s2 Review

Planned Topics

Neuroanatomy (9.10)

Perceptrons, Backpropagation (5.4-5.5, 6.1-6.5)
Hidden Unit Dynamics (8.2-8.3)

Recurrent Networks (10.2)

Convolutional Networks (7.12-7.13, 9.1-9.4)
Long Short Term Memory (10.5-10.7, 10.10)
Autoencoders (14.1-14.5)

Unsupervised Learning (5.8, 15.1)

Hopfield Networks

Restricted Boltzmann Machines (16.7, 20.1-20.3)
Generative Models (19.4, 20.9, 20.10)

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Topics Covered

Neuroanatomy
Perceptrons
Backpropagation
Variations on Backprop
Geometry
Convolutional Networks

Image Processing

©® NN kRE D=

Recurrent Networks

COMPY444

10.
1.
12.
13.
14.
15.
16.

Review

Language Processing
Reinforcement Learning

Deep Reinforcement Learning
Boltzmann Machines
Autoencoders

Adversarial Training and GANSs
Coevolution

Evolutionary Art

(©Alan Blair, 2017-18

COMP9444 18s2 Review

Not Examinable

Neuroanatomy (Lect 1)
Coevolution (Lect 15)

Evolutionary Art (Lect 16)

COMP9444

(©Alan Blair, 2017-18

COMP9444 18s2 Review

Final Exam

2-hour exam, centrally managed
worth 60% of final mark

NO textbook or course notes
approved calculators may be used

Exercises and Quizzes on the Course Web site give a good indication
of the kind of questions to expect in the exam

Sample Exam now available on Course Web Site

COMPY444 (©Alan Blair, 2017-18

COMPY444 18s2 Review

Structure of a Typical Neuron

Dendrite

Lxon Terminal

N[]dE [:If 3. J= 'F"- |
Ranvier “3j#,

r > Cell body

Ao Schwann cell

Myelin sheath

COMP9444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Biological Neurons

The brain 1s made up of neurons (nerve cells) which have

a cell body (soma)
dendrites (inputs)
an axon (outputs)

synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshhold an action potential

(electrical pulse) is sent along the axon to the outputs.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

McCulloch & Pitts Model of a Single Neuron

X1
\)
Y| — | & | — &(s)
V
X1, X7 are inputs
A2 wo=-th

re synapti igh
S:W1x1+W2x2—th Wi, wp are Sy aptcweg s

1 = wi1X1 +wyxp +wpo this a threshold

wo 1s a bias weight
g 1s transfer function

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = wix1 +woxo +wp

if g(s) = 0 but should be 1, if g(s) = 1 but should be 0,
Wi < Wi+MNXk Wi < Wi —MNXk
wo < wo+M wo < WwWo—T
SO 5 s+n(1+2x,%) SO § s—T](H—Zx,%)
k k

otherwise, weights are unchanged. (n > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,
as long as they are linearly separable.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 10

Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

1A 1 i 1 i
o ™. @ U ® 1 O

00 O—». 00——@—> 00 o—

0 1) 0 1 2 0 1 2
@ ,and , (b) , or , (€ | xor ,

Possible solution:

x1 XOR x can be written as: (x; AND xp) NOR (x; NOR x»p)
Recall that AND, OR and NOR can be implemented by perceptrons.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Multi-Layer Neural Networks

X@OR
("5

Problem: How can we train it to learn a new function? (credit assignment)

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 12

Types of Learning

Supervised Learning

agent 1s presented with examples of inputs and their target outputs

Reinforcement Learning

agent is not presented with target outputs, but is given a reward

signal, which it aims to maximize

Unsupervised Learning

agent 1s only presented with the inputs themselves, and aims to
find structure in these inputs

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 13

Ockham’s Razor

“The most likely hypothesis 1s the simplest one consistent with the data.”

inadequate good compromise over-fitting

Since there can be noise in the measurements, in practice need to make a
tradeoff between simplicity of the hypothesis and how well it fits the data.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 14

Two-Layer Neural Network

Output units a;
ji

Hidden units a;
kj

Input units aj

Normally, the numbers of input and output units are fixed,
but we can choose the number of hidden units.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Review

Local Search in Weight Space

A

Cost
function

Current
State

/

~flat” Local
Minimum
Shoulder Local Minimum
__—— Global Minimum
>

State Space

Problem: because of the step function, the landscape will not be

smooth but will instead consist almost entirely of flat local regions and

“shoulders™, with occasional discontinuous jumps.

COMP9444

(©Alan Blair, 2017-18

15

COMP9444 18s2 Review

Key Idea

(a) Step function (b) Sign function (c) Sigmoid function

Replace the (discontinuous) step function with a differentiable function,
such as the sigmoid:

1
)= e
or hyperbolic tangent
e’ —e® 1
g(S) = tanh(S) — m — 2(@) — 1

COMPY444 (©Alan Blair, 2017-18

16

COMP9444 18s2 Review 17

Gradient Descent (4.3)

Recall that the error function E is (half) the sum over all input patterns
of the square of the difference between actual output and desired output

E = 5 Z(Z — t)z
The aim 1is to find a set of weights for which E is very low.

If the functions involved are smooth, we can use multi-variable calculus
to adjust the weights in such a way as to take us in the steepest downhill

direction.

oE

Parameter 1 is called the learning rate.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 18

Variations on Backprop

Cross Entropy
problem: least squares error function unsuitable for classification,
where target =0 or 1
mathematical theory: maximum likelihood
solution: replace with cross entropy error function
Weight Decay
problem: weights “blow up”, and inhibit further learning
mathematical theory: Bayes’ rule
solution: add weight decay term to error function

Momentum

problem: weights oscillate in a “rain gutter”
solution: weighted average of gradient over time

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Cross Entropy

For classification tasks, target ¢ 1s either O or 1, so better to use
E = —tlog(z)— (1—1)log(l —z)

This can be justified mathematically, and works well in practice —
especially when negative examples vastly outweigh positive ones.
It also makes the backprop computations simpler

JE z—t
iz z(1-2)
: 1
if S l+e s’
ok _ ke
ds ozos

COMPY444 (©Alan Blair, 2017-18

19

COMP9444 18s2 Review 20

Bayes’ Rule (3.11)

The formula for conditional probability can be manipulated to find a
relationship when the two variables are swapped:

P(aAb) = P(a|b)P(b) = P(b|a)P(a)

P
— Bayes’ rule P(a|b) =

This 1s often useful for assessing the probability of an underlying cause
after an effect has been observed:

P(Effect|Cause)P(Cause)
P(Effect)

P(Cause|Effect) =

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Bayes Rule in Machine Learning

H 1is a class of hypotheses
P(D|h) = probability of data D being generated under hypothesis & € H.
P(h|D) = probability that / is correct, given that data D were observed.

Bayes’ Theorem:

P(HD)P(D) = P(D|)P(h)
P(hD) = © (l;’é’l);;(h)

P(h) is called the prior.

COMPY444 (©Alan Blair, 2017-18

21

COMP9444 18s2 Review

Weight Decay (5.2.2)

Assume that small weights are more likely to occur than large weights, i.e.

P(w) = %e_%zfﬁ

where Z i1s a normalizing constant. Then the cost function becomes:

1 A
E=_3(—t)"+ E;W?

l
This can prevent the weights from “saturating” to very high values.

Problem: need to determine A from experience, or empirically.

COMPY444 (©Alan Blair, 2017-18

22

COMP9444 18s2 Review

Momentum (8.3)

If landscape 1s shaped like a “rain gutter”, weights will tend to oscillate

without much improvement.

Solution: add a momentum factor

oFE

ow < 056w+(1—0c)%

w o w—now

Hopetully, this will dampen sideways oscillations but amplify downhill

motion by ﬁ.

COMPY444 (©Alan Blair, 2017-18

23

24

Review

COMP9444 18s2

Dropout (7.12)

0.‘\\

(NG
e ‘ \
«&0
DX/
o
Q

C
a e\

\,
“ . 7 {
t/ t)

/7
\/

(b) After applying dropout.

a) Standard Neural Net

Nodes are randomly chosen to not be used, with some fixed probability

(usually, one half).

(©Alan Blair, 2017-18

COMPY444

COMP9444 18s2 Review

Hinton Diagrams

Sharp Straight Sharp
Left Ahead Right
30 Output
Units
30x32 Sensor
Input Retina

used to visualize higher dimensions

white = positive, black = negative

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 26

Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.

For example, this Twin Spirals problem cannot be learned with a 2-layer
network, but it can be learned using a 3-layer network if we include

shortcut connections between non-consecutive layers.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 27

Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers is difficult.

When the weights are small, the differentials become smaller and smaller
as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will
saturate to extreme values. As a result, the gradients at those layers will
become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will
sometimes get multiplied many times is places where the transfer function
is steep, causing them to blow up to large values.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Review

Activation Functions (6.3)

_

Sigmoid

WL
OI
4 1

Hyperbolic Tangent

COMP9444

Rectified Linear Unit (ReLU)

Scaled Exponential Linear Unit (SELU)

(©Alan Blair, 2017-18

COMP9444 18s2 Review 29

Convolutional Network Components

Input Convolutional ~ Pooling Fully Connected Output
Layer Layer Layer Layer Layer
| | | l

|

convolution layers: extract shift-invariant features from the previous
layer

subsampling or pooling layers: combine the activations of multiple

units from the previous layer into one unit
fully connected layers: collect spatially diffuse information

output layer: choose between classes

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 30

Softmax (6.2.2)

Consider a classification task with N classes, and assume z; 1s the output
of the unit corresponding to class j.

We assume the network’s estimate of the probability of each class j is
proportional to exp(z;). Because the probabilites must add up to 1, we
need to normalize by dividing by their sum:

_ exp(z;)
Prob(i) =
Y1 exp(z;)
log Prob(i) —logZ | €Xp (z/)

If the correct class is i, we can treat —logProb(i) as our cost function.
The first term pushes up the correct class i, while the second term mainly
pushes down the incorrect class j with the highest activation (if j # i).

COMPY444 (©Alan Blair, 2017-18

COMPY444 18s2 Review 31

Convolutional Neural Networks

jm-»

ZJI:,k =& (bi + ZZZ:_(;]::_01 Kll;m,nvjlﬂLm,kJrn)
[

The same weights are applied to the next M x N block of inputs, to
compute the next hidden unit in the convolution layer (‘“‘weight sharing™).

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Stride with Zero Padding

When combined with zero padding of width P,
j takes on the values 0,s,2s,...,(J+2P—M)
k takes on the values 0, s,2s,...,(K+2P—N)
The next layeris (1+ (J+2P—M)/s) by (1+(K+2P—N)/s)

COMPY444 (©Alan Blair, 2017-18

32

COMP9444 18s2 Review

Convolutional Filters

First Layer Second Layer

COMP9444

Third Layer

(©Alan Blair, 2017-18

33

COMP9444 18s2 Review

Weight Initialization

In order to have healthy forward and backward propagation, each term in
the product must be approximately equal to 1. Any deviation from this
could cause the activations to either vanish or saturate, and the differentials
to either decay or explode exponentially.

Var|z] ~ (Ii Gon™Var [w(i)]) Var|x]

0 D -
Var[a] ~ (ll:! Gy n?“tVar[w(’)DVar[

9
0z

We therefore choose the initial weights {wﬁlk)} in each layer (i) such that
G Var[w)] = 1

COMPY444 (©Alan Blair, 2017-18

34

COMP9444 18s2 Review 35

Batch Normalization
We can normalize the activations x,ii) of node & in layer (i) relative to the
mean and variance of those activations, calculated over a mini-batch of
training items: 0 0
l l
(i) X, —Mean|x;"]

Var [x,(:)]

These activations can then be shifted and re-scaled to

y;il) _ B](Cl) +y](<l)£](cl)
B,ii), ,ii) are additional parameters, for each node, which are trained by
backpropagation along with the other parameters (weights) in the network.
After training is complete, Mean [x,(:)] and Var [x,(f)] are either pre-computed
on the entire training set, or updated using running averages.

COMP9444 (©Alan Blair, 2017-18

COMP9444 18s2

Residual Networks

anytwo
stacked layers

"

weight layer

lrelu

weight layer

|
HO) lre u

Review

F(x)

H(x)=F(x)+x

A 4

weight layer

lrelu

weight layer

36

identity
X

Idea: Take any two consecutive stacked layers in a deep network and add a

“skip” connection which bipasses these layers and is added to their output.

COMPY444

(©Alan Blair, 2017-18

COMP9444 18s2 Review 37

Dense Networks

Prediction

Dense Block 3
;"0 w0 v@® 90

Dense Block 2
0 w0 vO 40 |

Dense Block 1
@ v._ @ »& -

| ‘horse”

Q O Q
o o o
2 2 2
S I+ [=Hi S -
= = =
=) =4 =
3 - =

Recently, good results have been achieved using networks with densely
connected blocks, within which each layer is connected by shortcut

connections to all the preceding layers.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Neural Texture Synthesis

1. pretrain CNN on ImageNet (VGG-19)

2. pass input texture through CNN; compute feature map E,lC for i filter
at spatial location k in layer (depth) /

3. compute the Gram matrix for each pair of features

I [1
Gij :ZFiijk
k

. feed (initially random) image into CNN

4
5. compute L2 distance between Gram matrices of original and new image
6. backprop to get gradient on image pixels

7

. update image and go to step 3.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 39

Neural Style Transfer

?; f’“"\: G Y

content + style —> new image

COMP9444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 40

Neural Style Transfer

For Neural Style Transfer, we minimize a cost function which is

Eotal = O Econtent + BEstyle

o l 2 B l)
=5 LIFax) = Fa(xo) [P + ZNQMQZG —Ajj
i,k [1,)
where

Xcy X = content image, synthetic image

F} —= i filter at position k in layer !
N;, M; = number of filters, and size of feature maps, in layer [

wy = weighting factor for layer /

Gll], Allj = Gram matrices for style image, and synthetic image

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Recurrent Networks

Processing Temporal Sequences
Sliding Window

Recurrent Network Architectures
Hidden Unit Dynamics

Long Short Term Memory

COMPY444

Review

(©Alan Blair, 2017-18

41

COMP9444 18s2 Review 42

Sliding Window

speech
synthesizer 4’m J)
loudspeaker
LL R

neural
networls

M—E=zample 1|n|p|u]t tle|lzt to NWETtalk

The simplest way to feed temporal input to a neural network is the

“sliding window” approach, first used in the NetTalk system
(Sejnowski & Rosenberg, 1987).

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 43

Simple Recurrent Network (Elman, 1990)

at each time step, hidden layer activations are copied to “context” layer
hidden layer receives connections from input and context layers

the inputs are fed one at a time to the network, it uses the context layer
to “remember” whatever information is required for it to produce the

correct output

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Review

Back Propagation Through Time

D,

e

!

b

®
I

®
1

;

.

®
:

b

>

we can “unroll” a recurrent architecture into an equivalent feedforward

architecture, with shared weights

applying backpropagation to the unrolled architecture is reffered to as

“backpropagation through time”

we can backpropagate just one timestep, or a fixed number of

timesteps, or all the way back to beginning of the sequence

COMPY444

(©Alan Blair, 2017-18

44

COMPY444 18s2 Review

Oscillating Solution for 4"b"

08 -

06

HUZ2 Activation

aregion

0 02 0.4 0.6
HU1 Activation

COMP9444

(©Alan Blair, 2017-18

45

COMP9444 18s2 Review

Hidden Unit Dynamics for &"'b"¢"

al

-1] 1
-1 0 -1
H2 H1

SRN with 3 hidden units can learn to predict a*b"c" by counting up and
down simultaneously in different directions, thus producing a star shape.

COMP9444 (©Alan Blair, 2017-18

46

COMP9444 18s2 Review 47

Long Range Dependencies

00 SR A

¥
6 © o éa L

Simple Recurrent Networks (SRNs) can learn medium-range
dependencies but have difficulty learning long range dependencies

Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
can learn long range dependencies better than SRN

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Review

Long Short Term Memory

he
[o ot T o e i 2 o i e ey =1
Ct1 ~Ct Gt
i ’Q + 1
{
| RN
| O an |
: ft !t 3 gl' t(_’ '
I |
: 0 0 | [tanh 0 :
! ulw] [u]w] [u]w U |
I
hey |] ' h,
] A = 4 '
R O I
8
Wi Wi,
W,
hey hez hes
COMP9Y9444

48

Gates:

fi =0 (fot + Ufht_l -+ b_f)

i = o (Wix: + Uih:—1 + b;)

gt — tanh (ngt -+ Ught—l + bg)
Ot =0 (Woxt + Uoh¢—1 + bo)

State:
ct=ci—1 0 +i: © g

Output:
ht = tanh Ct ® O

(©Alan Blair, 2017-18

COMP9444 18s2 Review 49

Gated Recurrent Unit

Ay

Gates:
Zy = U(szt + Uzht—l + bz)
r: = U(Wrxt + Urht—l + b:r‘)

gandidate Activation:
ht =
tanh (Wx; + U(r: ® hy—_1) + bs)

Output:)
hi =(1-2:) ®©hi_1+2: © hy

Xt

GRU is similar to LSTM but has only two gates instead of three.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Co-occurrence Matrix (2-word window)

bought
cat
— | caught
o | crooked

— ~— | found
together

— | upon
— | walked

house

in

mouse

sixpence
— | was

all
and
he
little
lived
man
mile
stile
there
they
who

word

a

[E—
p—
p—

a
all

an
bought
cat
caught
crooked
found
he 1 1
house
m
little
lived 1
man
mile
mouse
sixpence
stile
there 1
they 11

together I 1

upon 1

walked 1 1
was 1

who 11 1 1

o ek y—aO\y—a [
[S—
[,
[S—
[
[, [,
[S— [S—
[S—
[S—
(S

ok
O W U G Y (U [Em—

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Word Embeddings

0.4 ' ' ' together
lived
they
03[
little
mouse
0.2 and
house
011
caught
ohF
a
crooked found Vt\llqa%re
o1k who
- man
bought
stile
-O 2 1 1 1 1
-0.6 -0.4 -0.2 0

COMPY444

(©Alan Blair, 2017-18

51

COMP9444 18s2 Review 52
Singular Value Decomposition

Co-occurrence matrix X can be decomposed as X = USV! where U, V
are unitary (all columns have unit length) and S 1s diagonal.
M N

N M
uz Sl 32 ‘ ‘
L Ll —u— ViV, N
s| |1
T
X U S \Y%

Columns 1 to n of row k of U then provide an n-dimensional vector
representing the k™ word in the vocabulary.

SVD is computationally expensive, proportional to L x M? if L > M.
Can we do something similar with less computation, and incrementally?

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Review

Continuous Bag Of Words

[O * O == 00O0]

== OO O]

[eNeNe])

. Q =s

O

COMPY444

Input layer

CxV-dim

Hidden layer

Output layer

If several context words are each
used independently to predict the
center word, the hidden activation
becomes a sum (or average) over all
the context words

Note the difference between
this and NetTalk — in word2vec

(CBOW) all context words share
the same input-to-hidden weights

(©Alan Blair, 2017-18

COMP9444 18s2 Review 54

word2vec Skip-Gram Model

g Output layer
‘; Yij
' try to predict the context words,
Input layer] given the center word
© this skip-gram model is similar to
o V2 : :
i N CBOW, except that in this case a
& single input word 1s used to predict
i g multiple context words
;yc- all context words share the same
' hidden-to-output weights
Cx I;—dim

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Hierarchical Softmax

n(w25l)

W, W, Wy Wy, Wyy Wy

|[n’ — child(n)] = +1, if ' is left child of node n,

—1, otherwise.
o(u) = 1/(1 —exp(—u))
L(w)—1
prob(w = wy) = L] o([n(w, j+ 1) = child(n(w, j))]v

COMPY444

/ T

n(wj) 1)

(©Alan Blair, 2017-18

55

COMP9444 18s2 Review 56

Negative Sampling

The 1dea of negative sampling is that we train the network to increase
its estimation of the target word j* and reduce its estimate not of all the
words in the vocabulary but just a subset of them W},c,, drawn from an
appropriate distribution.

T T
E = —logo(vi. h) — Z log(—V; h)
JE Wheg

This 1s a simplified version of Noise Constrastive Estimation (NCE).
It 1s not guaranteed to produce a well-defined probability distribution,
but in practice it does produce high-quality word embeddings.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Word Vector Arithmetic

Country and Capital Vectors Projected by PCA

2 T T . T T T
Chinas
"Beijing
15 | Russia«
Japan«
Moscow
1 =
TUFkGY‘ >Ankara)TOkyo
0.5 F
Poland«
0 Germany«
France ‘Warsaw
v —Berlin
-0.5 Italy- Paris
, »-=—>Athens
Greecex
1| Spain FianE
i X Madrid
-1.5 [Portugal Lisbon
_2 | 1 1 1 1 | |
-2 -1.5 1 -0.5 0 0.5 1 15

COMPY444

(©Alan Blair, 2017-18

57

COMPY444 18s2 Review

Bidirectional Recurrent Encoder

: (Economic, growth, has, slowed, down, in, recent, year,

COMPY444

(©Alan Blair, 2017-18

58

COMPY444 18s2 Review

Attention Mechanism

(La, croissance, économique, s'est, ralentie, ces, dernieres, anné

Attention
weight

i i1 i INC S i

W, 4

e = (Economic, growth, has, slowed, down, in, recent, years, .)

N 1

H H

COMP9444 (©Alan Blair, 2017-18

59

COMP9444 18s2 Review 60

Reinforcement Learning Framework

An agent interacts with its environment.
There 1s a set § of states and a set A4 of actions.

At each time step #, the agent 1s in some state s;.
It must choose an action a;, whereupon it goes into state
s;+1 = O(s;,a;) and receives reward r; = R (s, a;)

Agent has a policy w: S — A. We aim to find an optimal policy ©*

which maximizes the cumulative reward.

In general, 0, R and 7 can be multi-valued, with a random element,
in which case we write them as probability distributions

O(sir1=s8|81,ar) R(ry=rl|ssar) w(a =als;)

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Models of optimality

Is a fast nickel worth a slow dime?

h—1
Finite horizon reward) ryy;
i=0

Infinite discounted reward Y. Y'ri4, 0<y<l1
i=0
o h=l
Average reward %lm n oL Titi
— =0

Finite horizon reward is simple computationally
Infinite discounted reward is easier for proving theorems

Average reward 1s hard to deal with, because can’t sensibly choose
between small reward soon and large reward very far in the future.

COMPY444 (©Alan Blair, 2017-18

61

COMP9444 18s2 Review

RL Approaches

Value Function Learning
TD-Learning
Q-Learning

Policy Learning
Hill Climbing
Policy Gradients
Evolutionary Strategy

Actor-Critic

combination of Value and Policy learning

COMPY444 (©Alan Blair, 2017-18

62

COMP9444 18s2 Review 63

Exploration / Exploitation Tradeoff

Most of the time we should choose what we think is the best action.

However, in order to ensure convergence to the optimal strategy, we must
occasionally choose something different from our preferred action, e.g.

choose a random action 5% of the time, or

use Softmax (Boltzmann distribution) to choose the next action:

SR (@)/T

Ty eRO)/T
beAa

P(a)

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 64

Temporal Difference Learning

Let’s first assume that ® and 0 are deterministic. Then the (true) value
V*(s) of the current state s should be equal to the immediate reward plus
the discounted value of the next state

Vi(s) = R(s,a) +yV"(8(s,a))
We can turn this into an update rule for the estimated value, i.e.
V(St) <— Iy + FYV(S;.|_1)

If R and 0 are stochastic (multi-valued), it is not safe to simply replace
V (s) with the expression on the right hand side. Instead, we move its value
fractionally 1n this direction, proportional to a learning rate m

V(s;) <= V(se)+n[re+vV(st41) = V(st)]

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Q-Learning

For a deterministic environment, T°, O* and V* are related by

“(s)
Q" (s,a) = R(s,a) +YV"(8(s,a))

. V*(s) = max 0" (s,b)

0 (5,0) = R (s,a) +Ymax 0" (8(s,a),)
This allows us to iteratively approximate Q by

O(ss,a;) <1y ‘|‘YmbaXQ(St+1ab)

4

argmax_, Q™ (s,a)

If the environment is stochastic, we instead write

Q(Staaf) — Q(Staat)+n [rﬁ—ymgx Q(St-l-lvb) _Q(vaaf)]

COMPY444 (©Alan Blair, 2017-18

65

COMP9444 18s2 Review 66

Policy Gradients

If riota1 = +1 for a win and —1 for a loss, we can simply multiply the log
probability by rya. Differentials can be calculated using the gradient

Vo logmg(ayls;)
1

m
Vo I'total Z log g (at ’St) = T'total

m

The gradient of the log probability can be calculated nicely using Softmax.

If rora1 takes some other range of values, we can replace it with (r — b)

where b 1s a fixed value, called the baseline.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

REINFORCE Algorithm

We then get the following REINFORCE algorithm:

for each trial
run trial and collect states s;, actions a,, and reward rtq]
for t = 1 to length(trial)
0 < 0 +M(roral — b) Ve logme(ar|s;)
end
end

This algorithm has successfully been applied, for example, to learn to play
the game of Pong from raw image pixels.

COMPY444 (©Alan Blair, 2017-18

67

COMPY444 18s2 Review

Deep Q-Network

Convglution Convglution Fully cgnnected Fully cgnnected

No input

ooon dd

N L%&J
Vﬁ \

® © 0 o 0 0 0 0 0 o ¢

2

k0N E
Y B rMelelelv]y]-
"l'aaga alﬂlalall

o/ k+O

*/ €+0
. —

Ll
Sanoonn dny

COMP9444

(© Alan Blair, 2017-18

68

COMP9444 18s2 Review 69

Deep Q-Learning with Experience Replay

choose actions using current Q function (e-greedy)
build a database of experiences (s;,d;,;,8+1)

sample asynchronously from database and apply update, to minimize
K ‘|'lele Ow(s1+1,b) — QW(Stvat)]z

removes temporal correlations by sampling from variety of game

situations in random order

makes it easier to parallelize the algorithm on multiple GPUs

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 70

Double Q-Learning

if the same weights w are used to select actions and evaluate actions,
this can lead to a kind of confirmation bias

could maintain two sets of weights w and w, with one used for
selection and the other for evaluation (then swap their roles)

in the context of Deep Q-Learning, a simpler approach is to use the
current “online” version of w for selection, and an older “target”
version w for evaluation; we therefore minimize

[rt +YQW(SI+1aargmaXb QW(SZ‘—I—lab)) T QW(Staat)]z

a new version of w 1s periodically calculated from the distributed
values of w, and this w 1s broadcast to all processors.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 71

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted

from rota]
0 < 0+ M (rioa1 —) Vo log g (a;|s;)

In the actor-critic framework, r, is replaced by Q(s;,a;)

6 < 0+Mo O(sr,a;)Velogme(as | 51)

We can also subtract a baseline from Q(s;,a;). This baseline must be
independent of the action a;, but it could be dependent on the state s;.
A good choice of baseline is the value function V,(s), in which case the
Q function 1s replaced by the advantage function

Ay (s,a) = Q(s,a) —V,(s)

COMP9444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Asynchronous Advantage Actor Critic

use policy network to choose actions
learn a parameterized Value function V, (s) by TD-Learning

estimate Q-value by n-step sample
O(st,a;) = 11 + Y12+ .. A A +Y"Viu(St4n)
update policy by
0+ 0+me|O(s,ar;) — Viu(s:)|Vologmg(ay | s;)
update Value function my minimizing

[O(s,ar) —Vu(St)]2

COMPY444 (©Alan Blair, 2017-18

72

COMP9444 18s2 Review 73

Hill Climbing

Initialize “champ” policy O¢pamp =0
for each trial, generate “mutant” policy

Omutant = Bchamp + Gaussian noise (fixed o)

champ and mutant play up to n games, with same game initial
conditions (i.e. same seed for generating dice rolls)

if mutant does “better” than champ,

ec:hamp — echamp + Oc(emutant — ec:hamp)

“better’” means the mutant must score higher than the champ in the
first game, and at least as high as the champ in each subsequent game.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2

Evolved Behavior

COMP9444

Review

(©Alan Blair, 2017-18

74

COMPY444 18s2 Review 75
Evolutionary/Variational Methods

initialize mean u = {u;}1<;<m and standard deviation 6 = {G; }1<i<m

for each trial, collect £ samples from a Gaussian distribution
0; =u;+m;0; where mn;~ N(O, 1)

sometimes include “mirrored” samples 0; = Ui —M; O
evaluate each sample 0 to compute score or “fitness” F(0)

update mean u by _
p—u+o(F(6)—F)(0—pu)

o = learning rate, F' = baseline
sometimes, © is updated as well

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 76

Hopfield Network

1
E(x) = _(EZXiWijxj+Zbixi)
i,] i

Start with an initial state x and then repeatedly try to “flip” neuron
activations one at a time, in order to reach a lower-energy state. If we
choose to modify neuron x;, its new value should be

/

+1, if Z]-Wijx]'—l-b,‘>0,
Xi<— 4 x, 1t Y} wijxj+b; =0,

\—1, if ijinj+bi<O.

This ensures that the energy E(x) will never increase. It will eventually

reach a local minimum.

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 77

Boltzmann Machine (20.1)

The Boltzmann Machine uses exactly the same energy function as the

Hopfield network:
E(x) = —(Z XiWijXj+ Zbix,-)

i<j i
The Boltzmann Machine is very similar to the Hopfield Network, except that
components (neurons) x; take on the values 0, 1 instead of —1,41
used to generate new states rather than retrieving stored states

update is not deterministic but stochastic, using the sigmoid

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 78

Boltzmann Machine

The Boltzmann Machine operates similarly to a Hopfield Network, except
that there 1s some randomness in the neuron updates.

In both cases, we repeatedly choose one neuron x; and decide whether or
not to “flip” the value of x;, thus changing from state x into x’.

For the Hopfield Network, we flip if and only if AE < 0, i.e. we never
move to a higher energy state. For the Boltzmann machine, we instead flip
with probability 1

b e aEyT

In other words, there is some probability of moving to a higher energy
state (or remaining in a higher energy state even when a lower one is
available).

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review 79

Restricted Boltzmann Machine (16.7)

If we allow visible-to-visible and hidden-to-hidden connections, the
network takes too long to train. So we normally restrict the model by

allowing only visible-to-hidden connections.

Boltzmann Restricted
Machine Boltzmann
Machine

e,

i A SEHEY -~
Hidden (") .;;1 ()

-'; .) o
5 i 'll i \
| |
Visible o) [R y L

This 1s known as a Restricted Boltzmann Machine.

COMP9444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Restricted Boltzmann Machine

inputs are binary vectors

two-layer bi-directional neural network
visible layer v

hidden layer &
no vis-to-vis or hidden-to-hidden connections

all visible units connected to all hidden units

E(v,h) = —(Zbivi —|—Zthj —|—Zv,-wijhj)
i J i,
trained to maximize the expected log probability of the data

COMPY444 (©Alan Blair, 2017-18

80

COMPY444 18s2 Review 81

Alternating Gibbs Sampling

eve eve e 'Y X
<v;h; / \ / \ / e e <vihj>7 f(fantasy
@@ 0 o T ®
t=0 t = infinity

With the Restricted Boltzmann Machine, we can sample from the
Boltzmann distribution as follows:

choose vy randomly

then sample /g from p(h|vg)
then sample v; from p(v|hg)
then sample 4, from p(h|v;)
etc.

COMP9444 (©Alan Blair, 2017-18

COMPY444 18s2 Review

Quick Contrastive Divergence

It was noticed in the early 2000’s that the process can be sped up by taking
just one additional sample instead of running for many iterations.

t=0 t=1
data reconstruction

Vo, ho are used as positive sample, and vy, i as negative sample

this can be compared to the Negative Sampling that was used with
word2vec — it 1s not guaranteed to approximate the true gradient, but
it works well in practice

COMPY444 (©Alan Blair, 2017-18

82

COMP9444 18s2 Review 83

Autoencoder Networks

“bottleneck” hidden layer

input layer output layer

(reconstruction of input layer)

all layers are fully connected but not
drawn

output 1s trained to reproduce the input as closely as possible
activations normally pass through a bottleneck, so the network is
forced to compress the data in some way

like the RBM, Autoencoders can be used to automatically extract

abstract features from the input

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

Regularized Autoencoders (14.2)

sparse autoencoders
autoencoders with dropout at hidden layer(s)
contractive autoencoders

denoising autoencoders

COMP9444

(©Alan Blair, 2017-18

84

COMP9444 18s2 Review 85

Generative Models

Sometimes, as well as reproducing the training items {x{)}, we also
want to be able to use the decoder to generate new items which are of

a similar “style” to the training items.

In other words, we want to be able to choose latent variables z from
a standard Normal distribution p(z), feed these values of z to the
decoder, and have it produce a new item x which is somehow similar

to the training items.

Generative models can be:

explicit (Variational Autoencoders)

implicit (Generative Adversarial Networks)

COMPY444 (©Alan Blair, 2017-18

Variational Autoencoder (20.10.3)

Instead of producing a single z for each x(, the encoder (with parameters

¢) can be made to produce a mean He) and standard deviation Zz|x(,-)

This defines a conditional (Normal) probability distribution ge(z|x())
We then train the system to maximize

E. _,. oy [l0g po(eV[2)] — Dkt (g0(cl)]p(2))

the first term enforces that any sample z drawn from the conditional
distribution g¢(z/x")) should, when fed to the decoder, produce
somthing approximating x()

the second term encourages g (z|]x\)) to approximate p(z)

in practice, the distributions gy (z|x!)) for various x') will occupy
complementary regions within the overall distribution p(z)

COMPY444 (©Alan Blair, 2017-18

86

87

Review

COMP9444 18s2

igits

Variational Autoencoder D

S Raaqaa

AL A

LLLLLLEZ2Z2LL

LLLLLLLLLLALSESSEHGUYYY

......n.._l_...._.l_...77777777
bl il o N AN AN N AN AN AN
SCOCESNSANNNNNN
Qqq17?77777777
TTIToorenNRNNNNN
T T ToToo o= BN NN NN
(ol v ol al« ot~ o~ I SN NN N N e
PPPPEr TR NNN o = - -
NN OEC PRI == ———
VYA O NN on o O O om e = — — — —
e e e s L B R R e e e e e
AdAadadagageErey SN SN~N~~~
AAdAI IV N L NNNNNN N7

3

qu

ITT
ITT
ITIT
i i
FT
r
«

L2555 9944494

b
b
b
b
6
4
6
0
0
0
o
0
/
/
/
/
/

bbb@booooooo BRNN
b@oooooooaoaa///
DIJQ0000QQQAQNQ
JQI00000QQQQ0Q
oo QQ0

)
9 a
J Q
J o

4

10LbLLOL

Q0000090

~

round 65536: train in latent space

O N M N O~ 0O

(©Alan Blair, 2017-18

COMP9444

COMP9444 18s2 Review 88

Generative Adversarial Networks

Generator (Artist) Gg and Discriminator (Critic) Dy, are both
Deep Convolutional Neural Networks.

Generator Gy : z — x, with parameters 0, generates an image x from latent
variables z (sampled from a Normal distribution).

Discriminator Dy, : x — Dy (x) € (0, 1), with parameters y, takes an image
x and estimates the probability of the image being real.

Generator and Discriminator play a 2-player zero-sum game to compute:

mein max (EXN paaia 108Dy ()| +Ep i [10g(1 — Dy (Go(2)))])

Discriminator tries to maximize the bracketed expression,

Generator tries to minimize it.

COMPY444 (©Alan Blair, 2017-18

COMP9Y9444 18s2 Review 89
Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

k(B iy, 102Dy (5)] + Eor s 102 (1= Dy (Go(2)))]

Gradient descent on Generator, using:

ZN
H}eﬁiE Pmodel ligél 1 WEEBEE}})

This formula puts too much emphasis on images that are correctly
classified. Better to do gradient ascent on Generator, using:

mélx Ezprodel [log (D y(Go(2)))]

This puts more emphasis on the images that are wrongly classified.

COMPY444 (© Alan Blair, 2017-18

COMP9444 18s2 Review 90

Generative Adversarial Networks

repeat:
for k steps do
sample minibatch of m latent samples {z{), ..., z(™} from p(z)
sample minibatch of m training items {x(1), ... x(m)
update Discriminator by gradient ascent on \:

%f log Dy (x!) + log (1 — Dy (Ge(z)))]
end for -

sample minibatch of m latent samples {z(1),...,z(™} from p(z)
update Generator by gradient ascent on 0:

1 & :
Vo). log(Dy(Ge ("))
i=1
end repeat

COMPY444 (©Alan Blair, 2017-18

COMP9444 18s2 Review

GAN Generated Images

COMP9444

(©Alan Blair, 2017-18

91

COMP9444 18s2 Review

Related Courses

COMP3411/9414 Artificial Intelligence

COMP9Y417 Machine Learning and Data Mining
COMP4418 Knowledge Representation and Reasoning
COMP3431 Robotic Software Architecture
COMP9517 Machine Vision

4th Year Thesis topics

COMPY444

(©Alan Blair, 2017-18

92

COMP9444 18s2 Review

Possible 4th Year Projects

deep learning combined with evolution

deep learning for signal processing
self-normalizing activation functions

CNN with internal weight symmetries
adversarial coevolution of HERCL programs

other topics in deep learning, evolution, games

COMPY444

(©Alan Blair, 2017-18

93

COMP9444 18s2 Review

UNSW myEXxperience Survey

Please remember to fill in the UNSW myExperience Survey.

COMP9444 (©Alan Blair, 2017-18

94

COMP9444 18s2 Review

Neural Networks and Deep Learning

QUESTIONS?

COMP9444

(©Alan Blair, 2017-18

95

COMP9444 18s2 Review

Neural Networks and Deep Learning

GOOD LUCK!

COMP9444

(©Alan Blair, 2017-18

96

