
COMP3121 Lecture – Week 11

Computational Intractability

Serge Gaspers
LiC: Aleks Ignjatovic

1School of Computer Science and Engineering, UNSW Australia
2Optimisation Group, Decision Sciences, Data61, CSIRO

Serge Gaspers (UNSW) COMP3121: Intractability 1 / 54

Outline

1 Overview

2 Turing Machines, P, and NP

3 Reductions and NP-completeness

4 NP-complete problems

5 Extended class 3821/9801

Serge Gaspers (UNSW) COMP3121: Intractability 2 / 54

Resources

Chapter 34, NP-Completeness, in the textbook: Thomas H. Cormen,
Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

Slides: http://www.cse.unsw.edu.au/~sergeg/np.pdf

Serge Gaspers (UNSW) COMP3121: Intractability 3 / 54

http://www.cse.unsw.edu.au/~sergeg/np.pdf

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant c ∈ N such that the algorithm has (worst-case)
running-time O(nc), where n is the size of the input.

Example

Polynomial: n; n2 log2 n; n3; n20

Super-polynomial: nlog2 n; 2
√
n; 1.001n; 2n; n!

Serge Gaspers (UNSW) COMP3121: Intractability 4 / 54

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant c ∈ N such that the algorithm has (worst-case)
running-time O(nc), where n is the size of the input.

Example

Polynomial: n; n2 log2 n; n3; n20

Super-polynomial: nlog2 n; 2
√
n; 1.001n; 2n; n!

Serge Gaspers (UNSW) COMP3121: Intractability 4 / 54

Time complexities

n = 10 100 1, 000 10, 000 100, 000 1, 000, 000
n < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms
n2 log2 n < 1 ms < 1 ms < 1 ms 13 ms 1.66 sec 3.3 min
n3 < 1 ms < 1 ms 10 ms 10 sec 2.78 hours 3.86 months
n20 31.7 years > 1 U > 1 U > 1 U > 1 U > 1 U

2
√
n < 1 ms < 1 ms 33 ms > 1 U > 1 U > 1 U

1.001n < 1 ms < 1 ms < 1 ms < 1 ms > 1 U > 1 U
2n < 1 ms > 1 U > 1 U > 1 U > 1 U > 1 U
n! < 1 ms > 1 U > 1 U > 1 U > 1 U > 1 U

Table: Processing speed for various time complexities, assuming 1011 instructions are
processed per second (Intel Core i7). Here, U= 13.798 · 109 years.

Serge Gaspers (UNSW) COMP3121: Intractability 5 / 54

Tractable problems

Central Question
Which computational problems have polynomial-time algorithms?

Serge Gaspers (UNSW) COMP3121: Intractability 6 / 54

Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

A polynomial-time algorithm for one NP-complete problem would imply
polynomial-time algorithms for all problems in NP.

Gerhard Woeginger’s P vs NP page:
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Serge Gaspers (UNSW) COMP3121: Intractability 7 / 54

http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete

Polynomial

Shortest Path: Given a graph G,
two vertices a and b of G, and an
integer k, does G have a simple
a–b-path of length at most k?

Euler Tour: Given a graph G, does
G have a cycle that traverses each
edge of G exactly once?

2-CNF SAT: Given a propositional
formula F in 2-CNF, is F
satisfiable?
A k-CNF formula is a conjunction
(AND) of clauses, and each clause
is a disjunction (OR) of at most k
literals, which are negated or
unnegated Boolean variables.

NP-complete

Longest Path: Given a graph G
and an integer k, does G have a
simple path of length at least k?

Hamiltonian Cycle: Given a graph
G, does G have a simple cycle
that visits each vertex of G?

3-CNF SAT: Given a propositional
formula F in 3-CNF, is F
satisfiable?
Example:
(x∨¬y∨z)∧ (¬x∨z)∧ (¬y∨¬z).

Serge Gaspers (UNSW) COMP3121: Intractability 8 / 54

Overview

What’s next?

Formally define P, NP, and NP-complete (NPC)

New skill: show that a problem is NP-complete

Briefly: what to do when confronted with an NP-complete problem?

Serge Gaspers (UNSW) COMP3121: Intractability 9 / 54

Outline

1 Overview

2 Turing Machines, P, and NP

3 Reductions and NP-completeness

4 NP-complete problems

5 Extended class 3821/9801

Serge Gaspers (UNSW) COMP3121: Intractability 10 / 54

Decision problems and Encodings

<Name of Decision Problem>

Input: <What constitutes an instance>
Question: <Yes/No question>

We want to know which decision problems can be solved in polynomial time –
polynomial in the size of the input n.

Assume a “reasonable” encoding of the input

Many encodings are polynomial-time equivalent; i.e., one encoding can be
computed from another in polynomial time.

Important exception: unary versus binary encoding of integers.

An integer x takes dlog2 xe bits in binary and x = 2log2 x bits in unary.

Serge Gaspers (UNSW) COMP3121: Intractability 11 / 54

Decision problems and Encodings

<Name of Decision Problem>

Input: <What constitutes an instance>
Question: <Yes/No question>

We want to know which decision problems can be solved in polynomial time –
polynomial in the size of the input n.

Assume a “reasonable” encoding of the input

Many encodings are polynomial-time equivalent; i.e., one encoding can be
computed from another in polynomial time.

Important exception: unary versus binary encoding of integers.

An integer x takes dlog2 xe bits in binary and x = 2log2 x bits in unary.

Serge Gaspers (UNSW) COMP3121: Intractability 11 / 54

Exercise on Decision Problems

Cluster into groups of 4-5 students. Answer the following questions.
Let f : N→ N be a non-decreasing function.

1 Given an O(f(n))-time algorithm for Maximum Independent Set, design an
algorithm for Independent Set with running time O(f(n) · poly(n)).

2 Given an O(f(n))-time algorithm for Independent Set, design an algorithm
for Maximum Independent Set with running time O(f(n) · poly(n)).

Independent Set

Input: Graph G, integer k
Question: Does G have an indepen-

dent set of size at least k?

Def. An independent set of a graph
G = (V,E) is a subset of vertices S ⊆ V
such that no two vertices of S are
adjacent in G.

Maximum Independent Set

Input: Graph G
Output: A largest independent set

of G

Serge Gaspers (UNSW) COMP3121: Intractability 12 / 54

Formal-language framework

We can view decision problems as languages.

Alphabet Σ: finite set of symbols. W.l.o.g., Σ = {0, 1}
Language L over Σ: set of strings made with symbols from Σ: L ⊆ Σ∗

Fix an encoding of instances of a decision problem Π into Σ

Define the language LΠ ⊆ Σ∗ such that

x ∈ LΠ ⇔ x is a Yes-instance for Π

Serge Gaspers (UNSW) COMP3121: Intractability 13 / 54

Non-deterministic Turing Machine (NTM)

input word x ∈ Σ∗ placed on an
infinite tape (memory)

read-write head initially placed on
the first symbol of x

computation step: if the machine is
in state s and reads a, it can move
into state s′, writing b, and moving
the head into direction D ∈ {L,R}
if ((s, a), (s′, b,D)) ∈ δ.

Q: finite, non-empty set of states

Γ: finite, non-empty set of tape
symbols

∈ Γ: blank symbol (the only
symbol allowed to occur on the tape
infinitely often)

Σ ⊆ Γ \ {b}: set of input symbols

q0 ∈ Q: start state

A ⊆ Q: set of accepting (final)
states

δ ⊆ (Q\A×Γ)× (Q×Γ×{L,R}):
transition relation, where L stands
for a move to the left and R for a
move to the right.

Serge Gaspers (UNSW) COMP3121: Intractability 14 / 54

Accepted Language

Definition 1
A NTM accepts a word x ∈ Σ∗ if there exists a sequence of computation steps
starting in the start state and ending in an accept state.

Definition 2
The language accepted by an NTM is the set of words it accepts.

Serge Gaspers (UNSW) COMP3121: Intractability 15 / 54

Discussion: Non-deterministic Turing Machines

In groups, discuss whether you think that NTMs are realistic computation models

Is this a good representation of how our computing devices work?

What is different?

Serge Gaspers (UNSW) COMP3121: Intractability 16 / 54

Video

The LEGO Turing Machine
https://www.youtube.com/watch?v=cYw2ewoO6c4

Serge Gaspers (UNSW) COMP3121: Intractability 17 / 54

https://www.youtube.com/watch?v=cYw2ewoO6c4

Accept and Decide in polynomial time

Definition 3
A language L is accepted in polynomial time by an NTM M if

L is accepted by M , and

there is a constant k such that for any word x ∈ L, the NTM M accepts x in
O(|x|k) computation steps.

Definition 4
A language L is decided in polynomial time by an NTM M if

there is a constant k such that for any word x ∈ L, the NTM M accepts x in
O(|x|k) computation steps, and

there is a constant k′ such that for any word x ∈ Σ∗ \L, on input x the NTM
M halts in a non-accepting state (Q \A) in O(|x|k′

) computation steps.

Serge Gaspers (UNSW) COMP3121: Intractability 18 / 54

Deterministic Turing Machine

Definition 5

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine
where the transition relation contains at most one tuple ((s, a), (·, ·, ·)) for each
s ∈ Q \A and a ∈ Γ.

The transition relation δ can be viewed as a function
δ : Q \A× Γ→ Q× Γ× {L,R}.
⇒ For a given input word x ∈ Σ∗, there is exactly one sequence of computation
steps starting in the start state.

Serge Gaspers (UNSW) COMP3121: Intractability 19 / 54

Exercise: DTM

In groups:
Design a DTM (Q,Γ,Σ = {0, 1}, q0, A, δ) that accepts palindromes.
A palindrome is a word that is equal to its reverse; e.g., 011010110.
Recall:

Q: finite, non-empty set of states

Γ: finite, non-empty set of tape symbols

∈ Γ: blank symbol (the only symbol allowed to occur on the tape infinitely
often)

Σ ⊆ Γ \ {b}: set of input symbols

q0 ∈ Q: start state

A ⊆ Q: set of accepting (final) states

δ : Q \A× Γ→ Q× Γ× {L,R}: transition function, where L stands for a
move to the left and R for a move to the right.

Serge Gaspers (UNSW) COMP3121: Intractability 20 / 54

DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:

Random Access Machine (RAM, used for algorithms in the textbook)

variants of Turing machines (multiple tapes, infinite only in one direction, ...)

...

Serge Gaspers (UNSW) COMP3121: Intractability 21 / 54

P and NP

Definition 6 (P)

P = {L ⊆ Σ∗ : there is a DTM accepting L in polynomial time}

Definition 7 (NP)

NP = {L ⊆ Σ∗ : there is a NTM accepting L in polynomial time}

Definition 8 (coNP)

coNP = {L ⊆ Σ∗ : Σ∗ \ L ∈ NP}

Serge Gaspers (UNSW) COMP3121: Intractability 22 / 54

coP?

Theorem 9

P = {L ⊆ Σ∗ : there is a DTM deciding L in polynomial time}

Proof sketch.
Need to show:
if L is accepted by a DTM M in polynomial time, then there is a DTM that
decides L in polynomial time.
Idea: design a DTM M ′ that simulates M for c · nk steps, where c · nk is the
running time of M .
(Note that this proof is nonconstructive: we might not know the running time of
M .)

Serge Gaspers (UNSW) COMP3121: Intractability 23 / 54

coP?

Theorem 9

P = {L ⊆ Σ∗ : there is a DTM deciding L in polynomial time}

Proof sketch.
Need to show:
if L is accepted by a DTM M in polynomial time, then there is a DTM that
decides L in polynomial time.
Idea: design a DTM M ′ that simulates M for c · nk steps, where c · nk is the
running time of M .
(Note that this proof is nonconstructive: we might not know the running time of
M .)

Serge Gaspers (UNSW) COMP3121: Intractability 23 / 54

NP and certificates

Non-deterministic choices
A NTM for an NP-language L makes a polynomial number of non-deterministic
choices on input x ∈ L.
We can encode these non-deterministic choices into a certificate c, which is a
polynomial-length word.
Now, there exists a DTM, which, given x and c, verifies that x ∈ L.

Thus, L ∈ NP iff for each x ∈ L there exists a polynomial-length certificate c and
a DTM M such that given x and a, M can verify in polynomial time that x ∈ L.

Serge Gaspers (UNSW) COMP3121: Intractability 24 / 54

CNF-SAT is in NP

A CNF formula is a propositional formula in conjunctive normal form: a
conjunction (AND) of clauses; each clause is a disjunction (OR) of literals;
each literal is a negated or unnegated Boolean variable.

An assignment α : var(F)→ {0, 1} satisfies a clause C if it sets a literal of C
to true, and it satisfies F if it satisfies all clauses in F .

CNF-SAT
Input: CNF formula F
Question: Does F have a satisfying assignment?

Example: (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z).

Lemma 10
CNF-SAT ∈ NP.

Proof.
Exercise.

Serge Gaspers (UNSW) COMP3121: Intractability 25 / 54

Outline

1 Overview

2 Turing Machines, P, and NP

3 Reductions and NP-completeness

4 NP-complete problems

5 Extended class 3821/9801

Serge Gaspers (UNSW) COMP3121: Intractability 26 / 54

Polynomial-time reduction

Definition 11
A language L1 is polynomial-time reducible to a language L2, written L1 ≤P L2,
if there exists a polynomial-time computable function f : Σ∗ → Σ∗ such that for
all x ∈ Σ∗,

x ∈ L1 ⇔ f(x) ∈ L2.

A polynomial time algorithm computing f is a reduction algorithm.

Serge Gaspers (UNSW) COMP3121: Intractability 27 / 54

New polynomial-time algorithms via reductions

Lemma 12
If L1, L2 ∈ Σ∗ are languages such that L1 ≤P L2, then L2 ∈ P implies L1 ∈ P.

Proof.
Exercise.

Serge Gaspers (UNSW) COMP3121: Intractability 28 / 54

NP-completeness

Definition 13 (NP-hard)

A language L ⊆ Σ∗ is NP-hard if

L′ ≤P L for every L′ ∈ NP.

Definition 14 (NP-complete)

A language L ⊆ Σ∗ is NP-complete (in NPC) if

1 L ∈ NP, and

2 L is NP-hard.

Serge Gaspers (UNSW) COMP3121: Intractability 29 / 54

A first NP-complete problem

Theorem 15
CNF-SAT is NP-complete.

Proved by encoding NTMs into SAT and then CNF-SAT (Cook–Levin 1971/1973
and Karp 1972).

Serge Gaspers (UNSW) COMP3121: Intractability 30 / 54

Proving NP-completeness

Lemma 16

If L is a language such that L′ ≤P L for some L′ ∈ NPC, then L is NP-hard.
If, in addition, L ∈ NP, then L ∈ NPC.

Proof.

For all L′′ ∈ NP, we have L′′ ≤P L′ ≤P L.
By transitivity, we have L′′ ≤P L.
Thus, L is NP-hard.

Serge Gaspers (UNSW) COMP3121: Intractability 31 / 54

Proving NP-completeness

Lemma 16

If L is a language such that L′ ≤P L for some L′ ∈ NPC, then L is NP-hard.
If, in addition, L ∈ NP, then L ∈ NPC.

Proof.

For all L′′ ∈ NP, we have L′′ ≤P L′ ≤P L.
By transitivity, we have L′′ ≤P L.
Thus, L is NP-hard.

Serge Gaspers (UNSW) COMP3121: Intractability 31 / 54

Proving NP-completeness (2)

Method to prove that a language L is NP-complete:

1 Prove L ∈ NP
2 Prove L is NP-hard.

Select a known NP-complete language L′.
Describe an algorithm that computes a function f mapping every instance
x ∈ Σ∗ of L′ to an instance f(x) of L.
Prove that x ∈ L′ ⇔ f(x) ∈ L for all x ∈ Σ∗.
Prove that the algorithm computing f runs in polynomial time.

Serge Gaspers (UNSW) COMP3121: Intractability 32 / 54

Outline

1 Overview

2 Turing Machines, P, and NP

3 Reductions and NP-completeness

4 NP-complete problems

5 Extended class 3821/9801

Serge Gaspers (UNSW) COMP3121: Intractability 33 / 54

3-CNF SAT is NP-hard

Theorem 17
3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).

Serge Gaspers (UNSW) COMP3121: Intractability 34 / 54

3-CNF SAT is NP-hard

Theorem 17
3-CNF SAT is NP-complete.

Proof.
3-CNF SAT is in NP, since it is a special case of CNF-SAT.

To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).

Serge Gaspers (UNSW) COMP3121: Intractability 34 / 54

3-CNF SAT is NP-hard

Theorem 17
3-CNF SAT is NP-complete.

Proof.
3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.

Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).

Serge Gaspers (UNSW) COMP3121: Intractability 34 / 54

3-CNF SAT is NP-hard

Theorem 17
3-CNF SAT is NP-complete.

Proof.
3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k).

Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).

Serge Gaspers (UNSW) COMP3121: Intractability 34 / 54

3-CNF SAT is NP-hard

Theorem 17
3-CNF SAT is NP-complete.

Proof.
3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).

Serge Gaspers (UNSW) COMP3121: Intractability 34 / 54

3-CNF SAT is NP-hard

Theorem 17
3-CNF SAT is NP-complete.

Proof.
3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from
CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F ′

as follows. For each clause C in F :

If C has at most 3 literals, then copy C into F ′.

Otherwise, denote C = (`1 ∨ `2 ∨ · · · ∨ `k). Create k − 3 new variables
y1, . . . , yk−3, and add the clauses
(`1 ∨ `2 ∨ y1), (¬y1 ∨ `3 ∨ y2), (¬y2 ∨ `4 ∨ y3), . . . , (¬yk−3 ∨ `k−1 ∨ `k).

Show that F is satisfiable ⇔ F ′ is satisfiable.
Show that F ′ can be computed in polynomial time (trivial; use a RAM).

Serge Gaspers (UNSW) COMP3121: Intractability 34 / 54

Clique

A clique in a graph G = (V,E) is a subset of vertices S ⊆ V such that every two
vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question: Does G have a clique of size k?

Theorem 18
Clique is NP-complete.

Groupwork.

Hint: Reduce from 3-CNF SAT.

Serge Gaspers (UNSW) COMP3121: Intractability 35 / 54

Clique

A clique in a graph G = (V,E) is a subset of vertices S ⊆ V such that every two
vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question: Does G have a clique of size k?

Theorem 18
Clique is NP-complete.

Groupwork.
Hint: Reduce from 3-CNF SAT.

Serge Gaspers (UNSW) COMP3121: Intractability 35 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Clique is in NP

Let F = C1 ∧ C2 ∧ . . . Ck be a 3-CNF
formula

Construct a graph G that has a clique
of size k iff F is satisfiable

For each clause Cr = (`r1 ∨ · · · ∨ `rw),
1 ≤ r ≤ k, create w new vertices
vr1, . . . , v

r
w

Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

Check correctness and polynomial
running time

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Clique is in NP

Let F = C1 ∧ C2 ∧ . . . Ck be a 3-CNF
formula

Construct a graph G that has a clique
of size k iff F is satisfiable

For each clause Cr = (`r1 ∨ · · · ∨ `rw),
1 ≤ r ≤ k, create w new vertices
vr1, . . . , v

r
w

Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

Check correctness and polynomial
running time

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Clique is in NP

Let F = C1 ∧ C2 ∧ . . . Ck be a 3-CNF
formula

Construct a graph G that has a clique
of size k iff F is satisfiable

For each clause Cr = (`r1 ∨ · · · ∨ `rw),
1 ≤ r ≤ k, create w new vertices
vr1, . . . , v

r
w

Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

Check correctness and polynomial
running time

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Clique is in NP

Let F = C1 ∧ C2 ∧ . . . Ck be a 3-CNF
formula

Construct a graph G that has a clique
of size k iff F is satisfiable

For each clause Cr = (`r1 ∨ · · · ∨ `rw),
1 ≤ r ≤ k, create w new vertices
vr1, . . . , v

r
w

Add an edge between vri and vsj if

r 6= s and

`ri 6= ¬`sj where ¬¬x = x.

Check correctness and polynomial
running time

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Correctness: F has a satisfying
assignment iff G has a clique of size k.

(⇒): Let α be a sat. assignment for F .
For each clause Cr, choose a literal `ri
with α(`ri) = 1, and denote by sr the
corresponding vertex in G. Now,
{sr : 1 ≤ r ≤ k} is a clique of size k in
G since α(x) 6= α(¬x).

(⇐): Let S be a clique of size k in G.
Then, S contains exactly one vertex
sr ∈ {vr1, . . . , vrw} for each
r ∈ {1, . . . , k}. Denote by lr the
corresponding literal. Now, for any
r, r′, it is not the case that lr = ¬lr′ .
Therefore, there is an assignment α to
var(F) such that α(lr) = 1 for each
r ∈ {1, . . . , k} and α satisfies F .

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Correctness: F has a satisfying
assignment iff G has a clique of size k.

(⇒): Let α be a sat. assignment for F .
For each clause Cr, choose a literal `ri
with α(`ri) = 1, and denote by sr the
corresponding vertex in G. Now,
{sr : 1 ≤ r ≤ k} is a clique of size k in
G since α(x) 6= α(¬x).

(⇐): Let S be a clique of size k in G.
Then, S contains exactly one vertex
sr ∈ {vr1, . . . , vrw} for each
r ∈ {1, . . . , k}. Denote by lr the
corresponding literal. Now, for any
r, r′, it is not the case that lr = ¬lr′ .
Therefore, there is an assignment α to
var(F) such that α(lr) = 1 for each
r ∈ {1, . . . , k} and α satisfies F .

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Clique (2)

z

y

¬x

x ¬y ¬z

x

y

(¬x∨ y ∨ z)∧ (x∨¬y ∨¬z)∧ (x∨ y)

Correctness: F has a satisfying
assignment iff G has a clique of size k.

(⇒): Let α be a sat. assignment for F .
For each clause Cr, choose a literal `ri
with α(`ri) = 1, and denote by sr the
corresponding vertex in G. Now,
{sr : 1 ≤ r ≤ k} is a clique of size k in
G since α(x) 6= α(¬x).

(⇐): Let S be a clique of size k in G.
Then, S contains exactly one vertex
sr ∈ {vr1, . . . , vrw} for each
r ∈ {1, . . . , k}. Denote by lr the
corresponding literal. Now, for any
r, r′, it is not the case that lr = ¬lr′ .
Therefore, there is an assignment α to
var(F) such that α(lr) = 1 for each
r ∈ {1, . . . , k} and α satisfies F .

Serge Gaspers (UNSW) COMP3121: Intractability 36 / 54

Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k?

Theorem 19
Vertex Cover is NP-complete.

Groupwork.

Hint: Reduce from Clique.
Hint 2: The complement of G = (V,E) is the graph G = (V,E), where
E = {{u, v} : u, v ∈ V and {u, v} /∈ E}.

Serge Gaspers (UNSW) COMP3121: Intractability 37 / 54

Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k?

Theorem 19
Vertex Cover is NP-complete.

Groupwork.
Hint: Reduce from Clique.

Hint 2: The complement of G = (V,E) is the graph G = (V,E), where
E = {{u, v} : u, v ∈ V and {u, v} /∈ E}.

Serge Gaspers (UNSW) COMP3121: Intractability 37 / 54

Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of vertices S ⊆ V such that
every edge of G has an endpoint in S.

Vertex Cover
Input: Graph G, integer k
Question: Does G have a vertex cover of size k?

Theorem 19
Vertex Cover is NP-complete.

Groupwork.
Hint: Reduce from Clique.
Hint 2: The complement of G = (V,E) is the graph G = (V,E), where
E = {{u, v} : u, v ∈ V and {u, v} /∈ E}.

Serge Gaspers (UNSW) COMP3121: Intractability 37 / 54

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V,E) is a cycle visiting each vertex exactly
once.
(Alternatively, a permutation of V such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle

Input: Graph G
Question: Does G have a Hamiltonian Cycle?

Theorem 20
Hamiltonian Cycle is NP-complete.

Proof sketch.

Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Let us show: Vertex Cover ≤P Hamiltonian Cycle

. . .

Serge Gaspers (UNSW) COMP3121: Intractability 38 / 54

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V,E) is a cycle visiting each vertex exactly
once.
(Alternatively, a permutation of V such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle

Input: Graph G
Question: Does G have a Hamiltonian Cycle?

Theorem 20
Hamiltonian Cycle is NP-complete.

Proof sketch.
Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Let us show: Vertex Cover ≤P Hamiltonian Cycle

. . .

Serge Gaspers (UNSW) COMP3121: Intractability 38 / 54

Hamiltonian Cycle

A Hamiltonian Cycle in a graph G = (V,E) is a cycle visiting each vertex exactly
once.
(Alternatively, a permutation of V such that every two consecutive vertices are
adjacent and the first and last vertex in the permutation are adjacent.)

Hamiltonian Cycle

Input: Graph G
Question: Does G have a Hamiltonian Cycle?

Theorem 20
Hamiltonian Cycle is NP-complete.

Proof sketch.
Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Let us show: Vertex Cover ≤P Hamiltonian Cycle

. . .

Serge Gaspers (UNSW) COMP3121: Intractability 38 / 54

Hamiltonian Cycle (2)

Theorem 21
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Let us show: Vertex Cover ≤P Hamiltonian Cycle

Let (G = (V,E), k) be an instance for Vertex Cover (VC).

We will construct an equivalent instance G′ for Hamiltonian Cycle (HC).

Intuition: Non-deterministic choices

for VC: which vertices to select in the vertex cover
for HC: which route the cycle takes

...

Serge Gaspers (UNSW) COMP3121: Intractability 39 / 54

Hamiltonian Cycle (2)

Theorem 21
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Let us show: Vertex Cover ≤P Hamiltonian Cycle

Let (G = (V,E), k) be an instance for Vertex Cover (VC).

We will construct an equivalent instance G′ for Hamiltonian Cycle (HC).

Intuition: Non-deterministic choices

for VC: which vertices to select in the vertex cover
for HC: which route the cycle takes

...

Serge Gaspers (UNSW) COMP3121: Intractability 39 / 54

Hamiltonian Cycle (2)

Theorem 21
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Let us show: Vertex Cover ≤P Hamiltonian Cycle

Let (G = (V,E), k) be an instance for Vertex Cover (VC).

We will construct an equivalent instance G′ for Hamiltonian Cycle (HC).

Intuition: Non-deterministic choices

for VC: which vertices to select in the vertex cover
for HC: which route the cycle takes

...

Serge Gaspers (UNSW) COMP3121: Intractability 39 / 54

Hamiltonian Cycle (3)

Theorem 22
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Add k vertices s1, . . . , sk to G′ (selector vertices)

Each edge of G will be represented by a gadget (subgraph) of G′

s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle
going through all gadgets of G′ representing these edges.

Attention: we need to allow for an edge to be covered by both endpoints

Serge Gaspers (UNSW) COMP3121: Intractability 40 / 54

Hamiltonian Cycle (3)

Theorem 22
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Add k vertices s1, . . . , sk to G′ (selector vertices)

Each edge of G will be represented by a gadget (subgraph) of G′

s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle
going through all gadgets of G′ representing these edges.

Attention: we need to allow for an edge to be covered by both endpoints

Serge Gaspers (UNSW) COMP3121: Intractability 40 / 54

Hamiltonian Cycle (3)

Theorem 22
Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

Add k vertices s1, . . . , sk to G′ (selector vertices)

Each edge of G will be represented by a gadget (subgraph) of G′

s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle
going through all gadgets of G′ representing these edges.

Attention: we need to allow for an edge to be covered by both endpoints

Serge Gaspers (UNSW) COMP3121: Intractability 40 / 54

Hamiltonian Cycle (4)

Gadget representing the edge {u, v} ∈ E
Its states: ’covered by u’, ’covered by u and v’, ’covered by v’

Serge Gaspers (UNSW) COMP3121: Intractability 41 / 54

Hamiltonian Cycle (5)

Serge Gaspers (UNSW) COMP3121: Intractability 42 / 54

Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

On your own: read the NP-completeness proof of Subsection 34.5.5 in Chapter 34
of the textbook; stop at any time to see if you can finish it on your own.

Serge Gaspers (UNSW) COMP3121: Intractability 43 / 54

Coping with NP-hardness

Approximation algorithms

There is an algorithm, which, given an instance (G, k) for Vertex Cover, finds
a vertex cover of size at most 2k or correctly determines that G has no vertex
cover of size k.

Exact exponential time algorithms

There is an algorithm solving Vertex Cover in time O(1.2002n), where
n = |V |.

Fixed parameter algorithms

There is an algorithm solving Vertex Cover in time O(1.2738k + kn).

Heuristics

Heuristic A finds a smaller vertex cover than Heuristic B on benchmark
instances C1, . . . , Cm.

Restricting the inputs

Vertex Cover can be solved in polynomial time on bipartite graphs, trees,
interval graphs, etc.

Serge Gaspers (UNSW) COMP3121: Intractability 44 / 54

Advertisements

Algorithms @ UNSW
http://www.cse.unsw.edu.au/~algo/

COMP6741 - Parameterized and Exact Computation
http://www.cse.unsw.edu.au/~cs6741/

Serge Gaspers (UNSW) COMP3121: Intractability 45 / 54

http://www.cse.unsw.edu.au/~algo/
http://www.cse.unsw.edu.au/~cs6741/

Outline

1 Overview

2 Turing Machines, P, and NP

3 Reductions and NP-completeness

4 NP-complete problems

5 Extended class 3821/9801

Serge Gaspers (UNSW) COMP3121: Intractability 46 / 54

Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Dynamic Programming algorithm

Denote S = {s1, . . . , sn}
Table T [0..n, 0..t]

T [i, r] =

{
true if ∃X ⊆ {s1, . . . , si} :

∑
x∈X x = r

false otherwise

bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n · t) (pseudo-polynomial algorithm).

Serge Gaspers (UNSW) COMP3121: Intractability 47 / 54

Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Dynamic Programming algorithm

Denote S = {s1, . . . , sn}
Table T [0..n, 0..t]

T [i, r] =

{
true if ∃X ⊆ {s1, . . . , si} :

∑
x∈X x = r

false otherwise

bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n · t) (pseudo-polynomial algorithm).

Serge Gaspers (UNSW) COMP3121: Intractability 47 / 54

Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Dynamic Programming algorithm

Denote S = {s1, . . . , sn}
Table T [0..n, 0..t]

T [i, r] =

{
true if ∃X ⊆ {s1, . . . , si} :

∑
x∈X x = r

false otherwise

bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n · t) (pseudo-polynomial algorithm).

Serge Gaspers (UNSW) COMP3121: Intractability 47 / 54

Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Dynamic Programming algorithm

Denote S = {s1, . . . , sn}
Table T [0..n, 0..t]

T [i, r] =

{
true if ∃X ⊆ {s1, . . . , si} :

∑
x∈X x = r

false otherwise

bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n · t) (pseudo-polynomial algorithm).

Serge Gaspers (UNSW) COMP3121: Intractability 47 / 54

Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Dynamic Programming algorithm

Denote S = {s1, . . . , sn}
Table T [0..n, 0..t]

T [i, r] =

{
true if ∃X ⊆ {s1, . . . , si} :

∑
x∈X x = r

false otherwise

bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n · t)

(pseudo-polynomial algorithm).

Serge Gaspers (UNSW) COMP3121: Intractability 47 / 54

Algorithm for Subset Sum

Subset Sum
Input: Set of positive integers S, target integer t
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

Dynamic Programming algorithm

Denote S = {s1, . . . , sn}
Table T [0..n, 0..t]

T [i, r] =

{
true if ∃X ⊆ {s1, . . . , si} :

∑
x∈X x = r

false otherwise

bases cases... DP recurrence... running time

Subset Sum can be solved in time O(n · t) (pseudo-polynomial algorithm).

Serge Gaspers (UNSW) COMP3121: Intractability 47 / 54

Weak vs Strong NP-completeness

For problems whose input contains integers:

Weakly NP-hard = NP-hard

Strongly NP-hard = NP-hard, even if the integers in the input are
represented in unary

Serge Gaspers (UNSW) COMP3121: Intractability 48 / 54

P, NP, and certificates

In the following, F represents poly-time computable predicates (function
returning true or false)

P: class of languages {x : F (x)}
NP: class of languages {x : ∃c1 F (x, c1)}
coNP: class of languages {x : ∀c1 F (x, c1)}
where |c1| ≤ poly(|x|)

Serge Gaspers (UNSW) COMP3121: Intractability 49 / 54

Polynomial Hierarchy

P

{x : F (x)}

NP{x : ∃c1 F (x, c1)} coNP {x : ∀c1 F (x, c1)}

ΣP
2{x : ∃c1∀c2 F (x, c1, c2)} ΠP

2 {x : ∀c1∃c2 F (x, c1, c2)}

ΣP
3{x : ∃c1∀c2∃c3 F (x, c1, c2, c3)} ΠP

3 {x : ∀c1∃c2∀c3 F (x, c1, c2, c3)}

...

Serge Gaspers (UNSW) COMP3121: Intractability 50 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

Oracles

Oracle for a complexity class Π: solves any problem in Π in one computation
step

NPΠ: class of languages accepted in polynomial time by an NTM with access
to an oracle for Π

Alternatively NPΠ: class of languages of the form {x : ∃c1 FΠ(x, c1)}
where FΠ is a poly-time computable predicate with access to an oracle for Π

coNPΠ: class of languages of the form {x : ∀c1 FΠ(x, c1)}

ΣP
0 = P ΠP

0 = P

ΣP
k+1 = NPΣP

k ΠP
k+1 = coNPΣP

k

All complexity classes in the polynomial hierarchy are closed under ≤P reductions.

NPNP = NPSAT

Serge Gaspers (UNSW) COMP3121: Intractability 51 / 54

PSPACE

PSPACE

P

{x : F (x)}

NP{x : ∃c1 F (x, c1)} coNP {x : ∀c1 F (x, c1)}

ΣP
2{x : ∃c1∀c2 F (x, c1, c2)} ΠP

2 {x : ∀c1∃c2 F (x, c1, c2)}

ΣP
3{x : ∃c1∀c2∃c3 F (x, c1, c2, c3)} ΠP

3 {x : ∀c1∃c2∀c3 F (x, c1, c2, c3)}

...

Serge Gaspers (UNSW) COMP3121: Intractability 52 / 54

Counting Problems

<Name of Counting Problem>

Input: <What constitutes an instance>
Question: <Number of Yes-instances>

FP: class of polynomial-time solvable counting problems

#P: class of counting problems whose solution is the number of accept paths
of a polynomial-time Non-deterministic Turing Machine

Alternatively: a counting problem Π is in #P if there exists a
polynomial-time computable function F such that Π(x) = |{c : F (x, c)}|

Serge Gaspers (UNSW) COMP3121: Intractability 53 / 54

#P-completeness

Turing reduction: Π1 ≤T Π2 if there is an algorithm that solves P1 in
polynomial time using an oracle for Π2

Π is #P-hard if every problem in #P can be Turing reduced to Π

Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.
Hint: What goes wrong when using our reduction CNF-SAT ≤P 3-CNF-SAT?
How to fix it?

Serge Gaspers (UNSW) COMP3121: Intractability 54 / 54

#P-completeness

Turing reduction: Π1 ≤T Π2 if there is an algorithm that solves P1 in
polynomial time using an oracle for Π2

Π is #P-hard if every problem in #P can be Turing reduced to Π

Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.
Hint: What goes wrong when using our reduction CNF-SAT ≤P 3-CNF-SAT?
How to fix it?

Serge Gaspers (UNSW) COMP3121: Intractability 54 / 54

#P-completeness

Turing reduction: Π1 ≤T Π2 if there is an algorithm that solves P1 in
polynomial time using an oracle for Π2

Π is #P-hard if every problem in #P can be Turing reduced to Π

Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.

Hint: What goes wrong when using our reduction CNF-SAT ≤P 3-CNF-SAT?
How to fix it?

Serge Gaspers (UNSW) COMP3121: Intractability 54 / 54

#P-completeness

Turing reduction: Π1 ≤T Π2 if there is an algorithm that solves P1 in
polynomial time using an oracle for Π2

Π is #P-hard if every problem in #P can be Turing reduced to Π

Π is #P-complete if Π is in #P and Π is #P-hard.

#CNF-SAT is #P-complete.
#Bipartite-Perfect-Matchings is #P-complete.

Exercise: Show that #3-CNF-SAT is #P-complete.
Hint: What goes wrong when using our reduction CNF-SAT ≤P 3-CNF-SAT?
How to fix it?

Serge Gaspers (UNSW) COMP3121: Intractability 54 / 54

	Overview
	Turing Machines, P, and NP
	Reductions and NP-completeness
	NP-complete problems
	Extended class 3821/9801

