COMP3121 Lecture - Week 11

Computational Intractability

Serge Gaspers
LiC: Aleks Ignjatovic

${ }^{1}$ School of Computer Science and Engineering, UNSW Australia
${ }^{2}$ Optimisation Group, Decision Sciences, Data61, CSIRO

Outline

(1) Overview
(2) Turing Machines, P , and NP
(3) Reductions and NP-completeness

4 NP-complete problems
(5) Extended class 3821/9801

Resources

- Chapter 34, NP-Completeness, in the textbook: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
- Slides: http://www.cse.unsw.edu.au/~sergeg/np.pdf

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O\left(n^{c}\right)$, where n is the size of the input.

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O\left(n^{c}\right)$, where n is the size of the input.

Example

Polynomial: $n ; n^{2} \log _{2} n ; n^{3} ; n^{20}$
Super-polynomial: $n^{\log _{2} n} ; 2^{\sqrt{n}} ; 1.001^{n} ; 2^{n} ; n$!

Time complexities

$n=$	10	100	1,000	10,000	100,000	$1,000,000$
n	$<1 \mathrm{~ms}$					
$n^{2} \log _{2} n$	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	13 ms	1.66 sec	3.3 min
n^{3}	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	10 ms	10 sec	2.78 hours	3.86 months
n^{20}	31.7 years	$>1 \mathrm{U}$				
$2^{\sqrt{n}}$	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	33 ms	$>1 \mathrm{U}$	$>1 \mathrm{U}$	$>1 \mathrm{U}$
1.001^{n}	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	$<1 \mathrm{~ms}$	$>1 \mathrm{U}$	$>1 \mathrm{U}$
2^{n}	$<1 \mathrm{~ms}$	$>1 \mathrm{U}$				
$n!$	$<1 \mathrm{~ms}$	$>1 \mathrm{U}$				

Table: Processing speed for various time complexities, assuming 10^{11} instructions are processed per second (Intel Core i7). Here, $\mathrm{U}=13.798 \cdot 10^{9}$ years.

Tractable problems

Central Question

Which computational problems have polynomial-time algorithms?

Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

- A polynomial-time algorithm for one NP-complete problem would imply polynomial-time algorithms for all problems in NP.

Gerhard Woeginger's P vs NP page:
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete

NP-complete

- Longest Path: Given a graph G and an integer k, does G have a simple path of length at least k ?
- Hamiltonian Cycle: Given a graph G, does G have a simple cycle that visits each vertex of G ?
- 3-CNF SAT: Given a propositional formula F in 3-CNF, is F satisfiable?
Example:
$(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z)$.
- Shortest Path: Given a graph G, two vertices a and b of G, and an integer k, does G have a simple $a-b$-path of length at most k ?
- Euler Tour: Given a graph G, does G have a cycle that traverses each edge of G exactly once?
- 2-CNF SAT: Given a propositional formula F in 2-CNF, is F satisfiable?
A k-CNF formula is a conjunction (AND) of clauses, and each clause is a disjunction (OR) of at most k literals, which are negated or unnegated Boolean variables.

Overview

What's next?

- Formally define P, NP, and NP-complete (NPC)
- New skill: show that a problem is NP-complete
- Briefly: what to do when confronted with an NP-complete problem?

Outline

(1) Overview

(2) Turing Machines, P , and NP

3 Reductions and NP-completeness

4 NP-complete problems
(5) Extended class $3821 / 9801$

Decision problems and Encodings

$<$ Name of Decision Problem $>$
Input: $\quad<$ What constitutes an instance $>$
Question: <Yes/No question>

Decision problems and Encodings

```
<Name of Decision Problem>
Input: <What constitutes an instance>
Question: <Yes/No question>
```

We want to know which decision problems can be solved in polynomial time polynomial in the size of the input n.

- Assume a "reasonable" encoding of the input
- Many encodings are polynomial-time equivalent; i.e., one encoding can be computed from another in polynomial time.
- Important exception: unary versus binary encoding of integers.
- An integer x takes $\left\lceil\log _{2} x\right\rceil$ bits in binary and $x=2^{\log _{2} x}$ bits in unary.

Exercise on Decision Problems

Cluster into groups of 4-5 students. Answer the following questions. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function.
(1) Given an $O(f(n))$-time algorithm for Maximum Independent Set, design an algorithm for Independent Set with running time $O(f(n) \cdot \operatorname{poly}(n))$.
(2) Given an $O(f(n))$-time algorithm for Independent Set, design an algorithm for Maximum Independent Set with running time $O(f(n) \cdot \operatorname{poly}(n))$.

Independent Set

Input: Graph G, integer k
Question: Does G have an independent set of size at least k ?

Maximum Independent Set
Input: \quad Graph G
Output: A largest independent set of G

Def. An independent set of a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that no two vertices of S are adjacent in G.

Formal-language framework

We can view decision problems as languages.

- Alphabet Σ : finite set of symbols. W.I.o.g., $\Sigma=\{0,1\}$
- Language L over Σ : set of strings made with symbols from $\Sigma: L \subseteq \Sigma^{*}$
- Fix an encoding of instances of a decision problem Π into Σ
- Define the language $L_{\Pi} \subseteq \Sigma^{*}$ such that

$$
x \in L_{\Pi} \Leftrightarrow x \text { is a Yes-instance for } \Pi
$$

Non-deterministic Turing Machine (NTM)

- input word $x \in \Sigma^{*}$ placed on an infinite tape (memory)
- read-write head initially placed on the first symbol of x
- computation step: if the machine is in state s and reads a, it can move into state s^{\prime}, writing b, and moving the head into direction $D \in\{L, R\}$ if $\left((s, a),\left(s^{\prime}, b, D\right)\right) \in \delta$.

- Q : finite, non-empty set of states
- Γ : finite, non-empty set of tape symbols
- $\quad \in \Gamma$: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \backslash\{b\}$: set of input symbols
- $q_{0} \in Q$: start state
- $A \subseteq Q$: set of accepting (final) states
- $\delta \subseteq(Q \backslash A \times \Gamma) \times(Q \times \Gamma \times\{L, R\})$: transition relation, where L stands for a move to the left and R for a move to the right.

Accepted Language

Definition 1

A NTM accepts a word $x \in \Sigma^{*}$ if there exists a sequence of computation steps starting in the start state and ending in an accept state.

Definition 2

The language accepted by an NTM is the set of words it accepts.

Discussion: Non-deterministic Turing Machines

In groups, discuss whether you think that NTMs are realistic computation models

- Is this a good representation of how our computing devices work?
- What is different?

Video

The LEGO Turing Machine
https://www.youtube.com/watch?v=cYw2ewo06c4

Accept and Decide in polynomial time

Definition 3

A language L is accepted in polynomial time by an NTM M if

- L is accepted by M, and
- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O\left(|x|^{k}\right)$ computation steps.

Definition 4

A language L is decided in polynomial time by an NTM M if

- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O\left(|x|^{k}\right)$ computation steps, and
- there is a constant k^{\prime} such that for any word $x \in \Sigma^{*} \backslash L$, on input x the NTM M halts in a non-accepting state $(Q \backslash A)$ in $O\left(|x|^{k^{\prime}}\right)$ computation steps.

Deterministic Turing Machine

Definition 5

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine where the transition relation contains at most one tuple $((s, a),(\cdot, \cdot, \cdot))$ for each $s \in Q \backslash A$ and $a \in \Gamma$.

The transition relation δ can be viewed as a function $\delta: Q \backslash A \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$.
\Rightarrow For a given input word $x \in \Sigma^{*}$, there is exactly one sequence of computation steps starting in the start state.

Exercise: DTM

In groups:
Design a DTM $\left(Q, \Gamma, \Sigma=\{0,1\}, q_{0}, A, \delta\right)$ that accepts palindromes. A palindrome is a word that is equal to its reverse; e.g., 011010110. Recall:

- Q : finite, non-empty set of states
- Γ : finite, non-empty set of tape symbols
- _ $\in \Gamma$: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \backslash\{b\}$: set of input symbols
- $q_{0} \in Q$: start state
- $A \subseteq Q$: set of accepting (final) states
- $\delta: Q \backslash A \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$: transition function, where L stands for a move to the left and R for a move to the right.

DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:

- Random Access Machine (RAM, used for algorithms in the textbook)
- variants of Turing machines (multiple tapes, infinite only in one direction, ...)

P and NP

Definition 6 (P)

$\mathrm{P}=\left\{L \subseteq \Sigma^{*}\right.$: there is a DTM accepting L in polynomial time $\}$

Definition 7 (NP)

NP $=\left\{L \subseteq \Sigma^{*}\right.$: there is a NTM accepting L in polynomial time $\}$

Definition 8 (coNP)
 $\mathrm{coNP}=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in \mathrm{NP}\right\}$

coP?

Theorem 9

$\mathrm{P}=\left\{L \subseteq \Sigma^{*}\right.$: there is a DTM deciding L in polynomial time $\}$

coP?

Theorem 9

$\mathrm{P}=\left\{L \subseteq \Sigma^{*}\right.$: there is a DTM deciding L in polynomial time $\}$

Proof sketch.

Need to show:
if L is accepted by a DTM M in polynomial time, then there is a DTM that decides L in polynomial time.
Idea: design a DTM M^{\prime} that simulates M for $c \cdot n^{k}$ steps, where $c \cdot n^{k}$ is the running time of M.
(Note that this proof is nonconstructive: we might not know the running time of M.)

NP and certificates

Non-deterministic choices

A NTM for an NP-language L makes a polynomial number of non-deterministic choices on input $x \in L$.
We can encode these non-deterministic choices into a certificate c, which is a polynomial-length word.
Now, there exists a DTM, which, given x and c, verifies that $x \in L$.
Thus, $L \in$ NP iff for each $x \in L$ there exists a polynomial-length certificate c and a DTM M such that given x and a, M can verify in polynomial time that $x \in L$.

CNF-SAT is in NP

- A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha: \operatorname{var}(F) \rightarrow\{0,1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

CNF-SAT

Input: \quad CNF formula F
Question: Does F have a satisfying assignment?
Example: $(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z)$.

Lemma 10

$C N F-S A T \in N P$.

Proof.

Exercise.

Outline

(1) Overview
(2) Turing Machines, P , and NP
(3) Reductions and NP-completeness

4 NP-complete problems
(5) Extended class 3821/9801

Polynomial-time reduction

Definition 11

A language L_{1} is polynomial-time reducible to a language L_{2}, written $L_{1} \leq_{P} L_{2}$, if there exists a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all $x \in \Sigma^{*}$,

$$
x \in L_{1} \Leftrightarrow f(x) \in L_{2} .
$$

A polynomial time algorithm computing f is a reduction algorithm.

New polynomial-time algorithms via reductions

Lemma 12
If $L_{1}, L_{2} \in \Sigma^{*}$ are languages such that $L_{1} \leq_{P} L_{2}$, then $L_{2} \in \mathrm{P}$ implies $L_{1} \in \mathrm{P}$.

Proof.

Exercise.

NP-completeness

Definition 13 (NP-hard)

A language $L \subseteq \Sigma^{*}$ is NP-hard if

$$
L^{\prime} \leq_{P} L \text { for every } L^{\prime} \in \mathrm{NP} .
$$

Definition 14 (NP-complete)

A language $L \subseteq \Sigma^{*}$ is NP-complete (in NPC) if
(1) $L \in N P$, and
(2) L is NP-hard.

A first NP-complete problem

Theorem 15CNF-SAT is NP-complete.
Proved by encoding NTMs into SAT and then CNF-SAT (Cook-Levin 1971/1973 and Karp 1972).

Proving NP-completeness

Lemma 16

If L is a language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in$ NPC, then L is NP-hard. If, in addition, $L \in \mathrm{NP}$, then $L \in \mathrm{NPC}$.

Proving NP-completeness

Lemma 16

If L is a language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in$ NPC, then L is NP-hard. If, in addition, $L \in \mathrm{NP}$, then $L \in \mathrm{NPC}$.

Proof.

For all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime} \leq_{P} L^{\prime} \leq_{P} L$.
By transitivity, we have $L^{\prime \prime} \leq_{P} L$.
Thus, L is NP-hard.

Proving NP-completeness (2)

Method to prove that a language L is NP-complete:
(1) Prove $L \in \mathrm{NP}$
(2) Prove L is NP-hard.

- Select a known NP-complete language L^{\prime}.
- Describe an algorithm that computes a function f mapping every instance $x \in \Sigma^{*}$ of L^{\prime} to an instance $f(x)$ of L.
- Prove that $x \in L^{\prime} \Leftrightarrow f(x) \in L$ for all $x \in \Sigma^{*}$.
- Prove that the algorithm computing f runs in polynomial time.

Outline

(1) Overview

(2) Turing Machines, P, and NP

3 Reductions and NP-completeness

4 NP-complete problems

(5) Extended class 3821/9801

3-CNF SAT is NP-hard

Theorem 17
 3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F^{\prime} as follows. For each clause C in F :

- If C has at most 3 literals, then copy C into F^{\prime}.
- Otherwise, denote $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$.

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F^{\prime} as follows. For each clause C in F :

- If C has at most 3 literals, then copy C into F^{\prime}.
- Otherwise, denote $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$. Create $k-3$ new variables y_{1}, \ldots, y_{k-3}, and add the clauses

$$
\left(\ell_{1} \vee \ell_{2} \vee y_{1}\right),\left(\neg y_{1} \vee \ell_{3} \vee y_{2}\right),\left(\neg y_{2} \vee \ell_{4} \vee y_{3}\right), \ldots,\left(\neg y_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right) .
$$

3-CNF SAT is NP-hard

Theorem 17

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F^{\prime} as follows. For each clause C in F :

- If C has at most 3 literals, then copy C into F^{\prime}.
- Otherwise, denote $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$. Create $k-3$ new variables y_{1}, \ldots, y_{k-3}, and add the clauses

$$
\left(\ell_{1} \vee \ell_{2} \vee y_{1}\right),\left(\neg y_{1} \vee \ell_{3} \vee y_{2}\right),\left(\neg y_{2} \vee \ell_{4} \vee y_{3}\right), \ldots,\left(\neg y_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right) .
$$

Show that F is satisfiable $\Leftrightarrow F^{\prime}$ is satisfiable.
Show that F^{\prime} can be computed in polynomial time (trivial; use a RAM).

Clique

A clique in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every two vertices of S are adjacent in G.

Clique

Input: \quad Graph G, integer k
Question: Does G have a clique of size k ?

Theorem 18

Clique is NP-complete.
Groupwork.

Clique

A clique in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every two vertices of S are adjacent in G.

Clique

Input: Graph G, integer k
Question: Does G have a clique of size k ?

Theorem 18

Clique is NP-complete.
Groupwork.
Hint: Reduce from 3-CNF SAT.

Clique (2)

- Clique is in NP

Clique (2)

- Clique is in NP
- Let $F=C_{1} \wedge C_{2} \wedge \ldots C_{k}$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
$(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)$

Clique (2)

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)
$$

Clique (2)

- Clique is in NP
- Let $F=C_{1} \wedge C_{2} \wedge \ldots C_{k}$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_{r}=\left(\ell_{1}^{r} \vee \cdots \vee \ell_{w}^{r}\right)$, $1 \leq r \leq k$, create w new vertices $v_{1}^{r}, \ldots, v_{w}^{r}$
- Add an edge between v_{i}^{r} and v_{j}^{s} if

$$
\begin{array}{ll}
r \neq s & \\
\ell_{i}^{r} \neq \neg \ell_{j}^{s} & \\
\text { and } \\
\text { where } \neg \neg x=x
\end{array}
$$

- Check correctness and polynomial running time

Clique (2)

- Correctness: F has a satisfying assignment iff G has a clique of size k.

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)
$$

Clique (2)

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow) : Let α be a sat. assignment for F. For each clause C_{r}, choose a literal ℓ_{i}^{r} with $\alpha\left(\ell_{i}^{r}\right)=1$, and denote by s^{r} the corresponding vertex in G. Now, $\left\{s^{r}: 1 \leq r \leq k\right\}$ is a clique of size k in G since $\alpha(x) \neq \alpha(\neg x)$.

Clique (2)

$(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)$

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow) : Let α be a sat. assignment for F. For each clause C_{r}, choose a literal ℓ_{i}^{r} with $\alpha\left(\ell_{i}^{r}\right)=1$, and denote by s^{r} the corresponding vertex in G. Now, $\left\{s^{r}: 1 \leq r \leq k\right\}$ is a clique of size k in G since $\alpha(x) \neq \alpha(\neg x)$.
- (\Leftarrow) : Let S be a clique of size k in G. Then, S contains exactly one vertex $s_{r} \in\left\{v_{1}^{r}, \ldots, v_{w}^{r}\right\}$ for each $r \in\{1, \ldots, k\}$. Denote by l^{r} the corresponding literal. Now, for any r, r^{\prime}, it is not the case that $l_{r}=\neg l_{r^{\prime}}$. Therefore, there is an assignment α to $\operatorname{var}(F)$ such that $\alpha\left(l_{r}\right)=1$ for each $r \in\{1, \ldots, k\}$ and α satisfies F.

Vertex Cover

A vertex cover in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

```
Vertex Cover
    Input: Graph G, integer k
    Question: Does G}\mathrm{ have a vertex cover of size k?
```


Theorem 19

Vertex Cover is NP-complete.
Groupwork.

Vertex Cover

A vertex cover in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

```
Vertex Cover
    Input: Graph G, integer k
    Question: Does G}\mathrm{ have a vertex cover of size k?
```


Theorem 19

Vertex Cover is NP-complete.
Groupwork.
Hint: Reduce from Clique.

Vertex Cover

A vertex cover in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

```
Vertex Cover
    Input: Graph G, integer k
    Question: Does G}\mathrm{ have a vertex cover of size k?
```


Theorem 19

Vertex Cover is NP-complete.
Groupwork.
Hint: Reduce from Clique.
Hint 2: The complement of $G=(V, E)$ is the graph $\bar{G}=(V, \bar{E})$, where $\bar{E}=\{\{u, v\}: u, v \in V$ and $\{u, v\} \notin E\}$.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph $G=(V, E)$ is a cycle visiting each vertex exactly once.
(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

```
Hamiltonian Cycle
    Input: Graph G
    Question: Does G have a Hamiltonian Cycle?
```


Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph $G=(V, E)$ is a cycle visiting each vertex exactly once.
(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

```
Hamiltonian Cycle
    Input: Graph G
    Question: Does G have a Hamiltonian Cycle?
```


Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

- Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph $G=(V, E)$ is a cycle visiting each vertex exactly once.
(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

```
Hamiltonian Cycle
    Input: Graph G
    Question: Does G have a Hamiltonian Cycle?
```


Theorem 20

Hamiltonian Cycle is NP-complete.

Proof sketch.

- Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.
- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle

Hamiltonian Cycle (2)

Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle

Hamiltonian Cycle (2)

Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle
- Let $(G=(V, E), k)$ be an instance for Vertex Cover (VC).
- We will construct an equivalent instance G^{\prime} for Hamiltonian Cycle (HC).

Hamiltonian Cycle (2)

Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle
- Let $(G=(V, E), k)$ be an instance for Vertex Cover (VC).
- We will construct an equivalent instance G^{\prime} for Hamiltonian Cycle (HC).
- Intuition: Non-deterministic choices
- for VC: which vertices to select in the vertex cover
- for HC: which route the cycle takes
- ...

Hamiltonian Cycle (3)

Theorem 22

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_{1}, \ldots, s_{k} to G^{\prime} (selector vertices)

Hamiltonian Cycle (3)

Theorem 22

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_{1}, \ldots, s_{k} to G^{\prime} (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G^{\prime}
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G^{\prime} representing these edges.

Hamiltonian Cycle (3)

Theorem 22

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_{1}, \ldots, s_{k} to G^{\prime} (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G^{\prime}
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G^{\prime} representing these edges.
- Attention: we need to allow for an edge to be covered by both endpoints

Hamiltonian Cycle (4)

Gadget representing the edge $\{u, v\} \in E$ Its states: 'covered by u ', 'covered by u and v ', 'covered by v '

(a)

(b)

(c)

(d)

Hamiltonian Cycle (5)

Subset Sum

Subset Sum
 Input: \quad Set of positive integers S, target integer t Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

On your own: read the NP-completeness proof of Subsection 34.5.5 in Chapter 34 of the textbook; stop at any time to see if you can finish it on your own.

Coping with NP-hardness

- Approximation algorithms
- There is an algorithm, which, given an instance (G, k) for Vertex Cover, finds a vertex cover of size at most $2 k$ or correctly determines that G has no vertex cover of size k.
- Exact exponential time algorithms
- There is an algorithm solving Vertex Cover in time $O\left(1.2002^{n}\right)$, where $n=|V|$.
- Fixed parameter algorithms
- There is an algorithm solving Vertex Cover in time $O\left(1.2738^{k}+k n\right)$.
- Heuristics
- Heuristic A finds a smaller vertex cover than Heuristic B on benchmark instances C_{1}, \ldots, C_{m}.
- Restricting the inputs
- Vertex Cover can be solved in polynomial time on bipartite graphs, trees, interval graphs, etc.

Advertisements

- Algorithms @ UNSW
http://www.cse.unsw.edu.au/~algo/
- COMP6741 - Parameterized and Exact Computation http://www.cse.unsw.edu.au/~cs6741/

Outline

(1) Overview

(2) Turing Machines, P, and NP

3 Reductions and NP-completeness

(4) NP-complete problems
(5) Extended class 3821/9801

Algorithm for Subset Sum

Subset Sum

Input:
Set of positive integers S, target integer t
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

Algorithm for Subset Sum

Subset Sum

Input: \quad Set of positive integers S, target integer t
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

- Dynamic Programming algorithm
- Denote $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Table $T[0 . . n, 0 . . t]$

Algorithm for Subset Sum

Subset Sum

Input: \quad Set of positive integers S, target integer t
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

- Dynamic Programming algorithm
- Denote $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Table $T[0 . . n, 0 . . t]$

$$
T[i, r]= \begin{cases}\text { true } & \text { if } \exists X \subseteq\left\{s_{1}, \ldots, s_{i}\right\}: \sum_{x \in X} x=r \\ \text { false } & \text { otherwise }\end{cases}
$$

Algorithm for Subset Sum

Subset Sum

Input: \quad Set of positive integers S, target integer t
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

- Dynamic Programming algorithm
- Denote $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Table $T[0 . . n, 0 . . t]$

$$
T[i, r]= \begin{cases}\text { true } & \text { if } \exists X \subseteq\left\{s_{1}, \ldots, s_{i}\right\}: \sum_{x \in X} x=r \\ \text { false } & \text { otherwise }\end{cases}
$$

- bases cases... DP recurrence... running time

Algorithm for Subset Sum

Subset Sum

Input: \quad Set of positive integers S, target integer t
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

- Dynamic Programming algorithm
- Denote $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Table $T[0 . . n, 0 . . t]$

$$
T[i, r]= \begin{cases}\text { true } & \text { if } \exists X \subseteq\left\{s_{1}, \ldots, s_{i}\right\}: \sum_{x \in X} x=r \\ \text { false } & \text { otherwise }\end{cases}
$$

- bases cases... DP recurrence... running time

Subset Sum can be solved in time $O(n \cdot t)$

Algorithm for Subset Sum

Subset Sum

Input: \quad Set of positive integers S, target integer t
Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x=t$?

- Dynamic Programming algorithm
- Denote $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Table $T[0 . . n, 0 . . t]$

$$
T[i, r]= \begin{cases}\text { true } & \text { if } \exists X \subseteq\left\{s_{1}, \ldots, s_{i}\right\}: \sum_{x \in X} x=r \\ \text { false } & \text { otherwise }\end{cases}
$$

- bases cases... DP recurrence... running time

Subset Sum can be solved in time $O(n \cdot t)$ (pseudo-polynomial algorithm).

Weak vs Strong NP-completeness

For problems whose input contains integers:

- Weakly NP-hard = NP-hard
- Strongly NP-hard = NP-hard, even if the integers in the input are represented in unary

P, NP, and certificates

- In the following, F represents poly-time computable predicates (function returning true or false)
- P: class of languages $\{x: F(x)\}$
- NP: class of languages $\left\{x: \exists c_{1} F\left(x, c_{1}\right)\right\}$
- coNP: class of languages $\left\{x: \forall c_{1} F\left(x, c_{1}\right)\right\}$
- where $\left|c_{1}\right| \leq \operatorname{poly}(|x|)$

Polynomial Hierarchy

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step
- NP ${ }^{\Pi}$: class of languages accepted in polynomial time by an NTM with access to an oracle for Π

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step
- NP ${ }^{\Pi}$: class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively $\mathrm{N} \mathrm{P}^{\Pi}$: class of languages of the form $\left\{x: \exists c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step
- NP ${ }^{\Pi}$: class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively $\mathrm{N} \mathrm{P}^{\Pi}$: class of languages of the form $\left\{x: \exists c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP ${ }^{\Pi}$: class of languages of the form $\left\{x: \forall c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step
- NP ${ }^{\Pi}$: class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively $\mathrm{N} \mathrm{P}^{\Pi}$: class of languages of the form $\left\{x: \exists c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP ${ }^{\Pi}$: class of languages of the form $\left\{x: \forall c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$

$$
\begin{aligned}
\Sigma_{0}^{P} & =\mathrm{P} & \Pi_{0}^{P} & =\mathrm{P} \\
\Sigma_{k+1}^{P} & =\mathrm{NP}^{\Sigma_{k}^{P}} & \Pi_{k+1}^{P} & =\operatorname{coNP}^{\Sigma_{k}^{P}}
\end{aligned}
$$

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step
- NP ${ }^{\Pi}$: class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively $\mathrm{N} \mathrm{P}^{\Pi}$: class of languages of the form $\left\{x: \exists c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP ${ }^{\Pi}$: class of languages of the form $\left\{x: \forall c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$

$$
\begin{aligned}
\Sigma_{0}^{P} & =\mathrm{P} & \Pi_{0}^{P} & =\mathrm{P} \\
\Sigma_{k+1}^{P} & =\mathrm{NP}^{\Sigma_{k}^{P}} & \Pi_{k+1}^{P} & =\operatorname{coNP}^{\Sigma_{k}^{P}}
\end{aligned}
$$

All complexity classes in the polynomial hierarchy are closed under \leq_{P} reductions.

Oracles

- Oracle for a complexity class Π : solves any problem in Π in one computation step
- NP ${ }^{\Pi}$: class of languages accepted in polynomial time by an NTM with access to an oracle for Π
- Alternatively $\mathrm{N} \mathrm{P}^{\Pi}$: class of languages of the form $\left\{x: \exists c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$ where F^{Π} is a poly-time computable predicate with access to an oracle for Π
- coNP ${ }^{\Pi}$: class of languages of the form $\left\{x: \forall c_{1} F^{\Pi}\left(x, c_{1}\right)\right\}$

$$
\begin{aligned}
\Sigma_{0}^{P} & =\mathrm{P} & \Pi_{0}^{P} & =\mathrm{P} \\
\Sigma_{k+1}^{P} & =\mathrm{NP}^{\Sigma_{k}^{P}} & \Pi_{k+1}^{P} & =\operatorname{coNP}^{\Sigma_{k}^{P}}
\end{aligned}
$$

All complexity classes in the polynomial hierarchy are closed under \leq_{P} reductions.

$$
N P^{N P}=N P^{S A T}
$$

PSPACE

Counting Problems

$$
\begin{array}{ll}
\hline \text { <Name of } & \text { Counting Problem> } \\
\text { Input: } & <\text { What constitutes an instance> } \\
\text { Question: } & <\text { Number of Yes-instances }>
\end{array}
$$

- FP: class of polynomial-time solvable counting problems
- \#P: class of counting problems whose solution is the number of accept paths of a polynomial-time Non-deterministic Turing Machine
- Alternatively: a counting problem Π is in \#P if there exists a polynomial-time computable function F such that $\Pi(x)=|\{c: F(x, c)\}|$

\#P-completeness

- Turing reduction: $\Pi_{1} \leq_{T} \Pi_{2}$ if there is an algorithm that solves P_{1} in polynomial time using an oracle for Π_{2}
- Π is \#P-hard if every problem in \#P can be Turing reduced to Π
- Π is \#P-complete if Π is in \#P and Π is \#P-hard.

\#P-completeness

- Turing reduction: $\Pi_{1} \leq_{T} \Pi_{2}$ if there is an algorithm that solves P_{1} in polynomial time using an oracle for Π_{2}
- Π is \#P-hard if every problem in \#P can be Turing reduced to Π
- Π is \#P-complete if Π is in \#P and Π is \#P-hard.
\#CNF-SAT is \#P-complete.
\#Bipartite-Perfect-Matchings is \#P-complete.

\#P-completeness

- Turing reduction: $\Pi_{1} \leq_{T} \Pi_{2}$ if there is an algorithm that solves P_{1} in polynomial time using an oracle for Π_{2}
- Π is \#P-hard if every problem in \#P can be Turing reduced to Π
- Π is \#P-complete if Π is in \#P and Π is \#P-hard.
\#CNF-SAT is \#P-complete.
\#Bipartite-Perfect-Matchings is \#P-complete.
Exercise: Show that \#3-CNF-SAT is \#P-complete.

\#P-completeness

- Turing reduction: $\Pi_{1} \leq_{T} \Pi_{2}$ if there is an algorithm that solves P_{1} in polynomial time using an oracle for Π_{2}
- Π is \#P-hard if every problem in \#P can be Turing reduced to Π
- Π is \#P-complete if Π is in \# P and Π is \#P-hard.
\#CNF-SAT is \#P-complete.
\#Bipartite-Perfect-Matchings is \#P-complete.
Exercise: Show that \#3-CNF-SAT is \#P-complete.
Hint: What goes wrong when using our reduction CNF-SAT $\leq_{P} 3-$ CNF-SAT? How to fix it?

