2a. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers

Semester 2, 2018

Contents

1	Reminder	1
2	Kernel for Hamiltonian Cycle	1
3	Kernel for Edge Clique Cover	2
4	Frequently Arising Issues	3

1 Reminder

Kernelization

Definition 1. A kernelization (kernel) for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Fixed-parameter tractability

Definition 2. A parameterized problem Π is fixed-parameter tractable (FPT) if there is an algorithm solving Π in time $f(k) \cdot \mathsf{poly}(n)$, where n is the instance size, k is the parameter, poly is a polynomial function, and f is a computable function.

Theorem 3. Let Π be a decidable parameterized problem. Π has a kernelization $\Leftrightarrow \Pi$ is FPT.

2 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

vc-Hamiltonian Cycle
Input: A graph G = (V, E).
Parameter: k = vc(G), the size of a smallest vertex cover of G.
Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Issue: We do not actually know a vertex cover of size k.

- Obtain a vertex cover of size $\leq 2k$ by applying Vertex Cover-kernelizations to $(G,0),(G,1),\ldots$ until the first instance where no trivial No-instance is returned.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| 2k$.
- \bullet No two consecutive vertices in the Hamiltonian Cycle can be in I.

• A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)

Compute a vertex cover C of size $\leq 2k$ in polynomial time. If 2|C| < |V|, then return No

3 Kernel for Edge Clique Cover

Definition 4. An edge clique cover of a graph G = (V, E) is a set of cliques in G covering all its edges. In other words, if $C \subseteq 2^V$ is an edge clique cover then each $S \in C$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in C$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}\$ is an edge clique cover for this graph.

EDGE CLIQUE COVER

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have an edge clique cover of size at most k?

The *size* of an edge clique cover \mathcal{C} is the number of cliques contained in \mathcal{C} and is denoted $|\mathcal{C}|$.

Helpful properties

Definition 5. A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 6. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch. (\Rightarrow): Replace each clique $S \in \mathcal{C}$ by a maximal clique S' with $S \subseteq S'$.

 (\Leftarrow) : Trivial, since \mathcal{C}' is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 7. (Isolated) is sound.

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u, v\}$ and $k \leftarrow k - 1$.

(Twins)

If $\exists u, v \in V, u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 8. (Twins) is sound.

Proof. We need to show that G has an edge clique cover of size at most k if and only if G - v has an edge clique cover of size at most k.

- (⇒): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of G v of size at most k.
- (\Leftarrow) : Let \mathcal{C}' be an edge clique cover of G-v of size at most k. Partition \mathcal{C} into $\mathcal{C}_u=\{S\in\mathcal{C}:u\in S\}$ and $\mathcal{C}_{\neg u}=\mathcal{C}\setminus\mathcal{C}_u$. Note that each set in $\mathcal{C}'_u=\{S\cup\{v\}:S\in\mathcal{C}_u\}$ is a clique since $N_G[u]=N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $\mathcal{C}'_u\cup\mathcal{C}_{\neg u}$ is an edge clique cover of G of size at most k.

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 9. (Size-V) is sound.

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover \mathcal{C} of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of \mathcal{C}) has size at most 2^k , and every vertex belongs to at least one clique in \mathcal{C} by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C} : u \in S\} = \{S \in \mathcal{C} : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in \mathcal{C}: u \in S} S = \bigcup_{S \in \mathcal{C}: v \in S} S = N_G[v]$, contradicting that (Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 10. Edge Clique Cover has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 11. Edge Clique Cover is FPT.

4 Frequently Arising Issues

Issue 1: A kernelization needs to produce an instance of the same problem.

How could we turn the following lemma into a simplification rule?

Lemma 12. If there is an edge $\{u,v\} \in E$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then there is a smallest edge clique cover C with $S \in C$.

Proof. By Lemma 6, we may assume the clique covering the edge $\{u, v\}$ is a maximal clique. But, S is the unique maximal clique covering $\{u, v\}$.

(Neighborhood-Clique)

If there exists $\{u,v\} \in E$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then ...???

Edges with both endpoints in $S \setminus \{u, v\}$ are covered by S but might still be needed in other cliques.

We could design a kernelization for a more general problem.

GENERALIZED EDGE CLIQUE COVER

Input: A graph G = (V, E), a set of edges $R \subseteq E$, and an integer k

Parameter: k

Question: Is there a set \mathcal{C} of at most k cliques in G such that each $e \in R$ is contained in at least one of

these cliques?

(Neighborhood-Clique)

If there exists $\{u,v\} \in R$ such that $S = N_G[u] \cap N_G[v]$ is a clique, then set $G \leftarrow (V, E \setminus \{u,v\}), R \leftarrow R \setminus \{\{x,y\}: x,y \in S\}$, and $k \leftarrow k-1$.

Issue 2: A proposed simplification rule might not be sound.

Consider the following simplification rule for Vertex Cover.

(\mathbf{Degk})

If $\exists v \in V$ such that $d_G(v) \geq k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

To show that a simplification rule is not sound, we exhibit a counter-example.

Issue 3: A problem might be FPT, but only an exponential kernel might be known / possible to achieve.