6a. Measure & Conquer
COMP6741: Parameterized and Exact Computation

Serge Gaspers
Semester 2, 2018

Contents

1_Introduction| 1

2 Maximum Independent Set| 2
2.1 Simple Analysis|. Lo 3
[2.2 Search Trees and Branching Numbers|0 o0 oo 5
[2.3 Measure & Conquer Analysis| 6
2.4 Optimizing the measure| 8
2.5 xponential Time Subroutines| 8
[2.6 Structures that arise rarely| 9

[3 Further Reading| 10

1 Introduction

Recall: Maximal Independent Sets
o A vertex set S CV of a graph G = (V, E) is an independent set in G if there is no edge uv € E with u,v € S.
e An independent set is mazimal if it is not a subset of any other independent set.

e Examples:

Enumeration problem: Enumerate all maximal independent sets

ENuM-MIS
Input: graph G
Output: all maximal independent sets of G

Maximal independent sets: {a,d}, {b},{c}

Note: Let v be a vertex of a graph G. Every maximal independent set contains a vertex from Ng[v].

Branching Algorithm for Enum-MIS

Algorithm enum-mis(G,I)

Input : A graph G = (V, E), an independent set I of G.

Output: All maximal independent sets of G that are supersets of I.

G+ G- Ng [I]

if V(G’') =0 then // G' has no vertex
| Output I

else
L Select v € V(G’) such that dg(v) = §(G’) // v has min degree in G’

W N

[B

Run enum-mis(G, I U {u}) for each u € Ng/[v]

Running Time Analysis
Let us upper bound by L(n) = 2*" the number of leaves in any search tree of enum-mis for an instance with

V(G| <n.

We minimize a subject to constraints obtained from the branching:

Lin)>(d+1)-L(n—(d+1)) for each integer d > 0.
o 20m > . 2“'("_‘” for each integer d’ > 1.
& 1>d - 2vCd) for each integer d’' > 1.

For fixed d’, the smallest value for 2% satisfying the constraint is d’*/¢". The function f (z) = z'/* has its maximum
value for x = e and for integer « the maximum value of f(x) is when x = 3.
Therefore, the minimum value for 2¢ for which all constraints hold is 3'/3. We can thus set L(n) = 3"/3.

Since the height of the search trees is < |V(G')|, we obtain:
Theorem 1. Algorithm enum-mis has running time O*(3"/3) C 0(1.4423™), where n = |V|.

Corollary 2. A graph on n vertices has O(3"/3) maximal independent sets.

Running Time Lower Bound

AN AN - A

Theorem 3. There is an infinite family of graphs with Q(3™/?) mazimal independent sets.

2 Maximum Independent Set

MAXIMUM INDEPENDENT SET
Input: graph G
Output: A largest independent set of G.

Branching Algorithm for Maximum Independent Set
Algorithm mis(Q)
Input : A graph G = (V) E).
Output: The size of a maximum i.s. of G.

1 if A(G) <2 then // G has max degree < 2
2 L return the size of a maximum i.s. of G in polynomial time
3 else if Jv € V : d(v) =1 then // v has degree 1

L return 1 + mis(G — N[v])

5 else if G is not connected then
Let G1 be a connected component of G
return mis(G;) + mis(G — V(G1))

8 else
9 Select v € V s.t. d(v) = A(G) // v has max degree
10 return max (1 + mis(G — N[v]), mis(G — v))

Correctness
Line [t

Lemma 4. If v € V has degree 1, then G has a maximum independent set I with v € I.

Proof. Let J be a maximum independent set of G. If v € J we are done because we can take I = J. If v ¢ J, then
u € J, where u is the neighbor of v, otherwise J would not be maximum. Set I = (J\ {u}) U {v}. We have that I
is an independent set, and, since |I| = |J|, I is a maximum independent set containing v. O

2.1 Simple Analysis

Lemma 5 (Simple Analysis Lemma). Let
e A be a branching algorithm
e a>0, ¢c>0 be constants

such that on input I, A calls itself recursively on instances I, ..., I, but, besides the recursive calls, uses time
O(|I|%), such that
(Vi:1<i<k) |L|<|I|-1, and (1)
ool o4 ookl < gerlIl (2)

Then A solves any instance I in time O(|I|ct1) - 2011,

Proof. By induction on |I]. W.l.o.g., suppose the hypotheses’ O statements hide a constant factor d > 0, and for
the base case assume that the algorithm returns the solution to an empty instance in time d < d - |I|C+12a'|l|.

Suppose the lemma holds for all instances of size at most |I| — 1 > 0, then the running time of algorithm A on
instance [is

k
Ta(l) < d-|I|°+ > Ta(l) (by definition)
i=1
<d-|I°+ Zd' |I;| e+ oo Il (by the inductive hypothesis)
<d- I 4d- (1] =1ty oIk (by (1)
<d-|I|°+d-(|I| — 1)+t (by @)

<d- ‘I‘c+12a-\1|.

The final inequality uses that « - |I| > 0 and holds for any ¢ > 0. O

Simple Analysis for mis

e At each node of the search tree: O(n?)

e G disconnected: (1) If @-s < 1, then s < 1/, and the algorithm solves GG; in constant time (provided
that « > 0). We can view this rule as a simplification rule, removing G and making one recursive call on
G—-V(Gy1). 2)If - (n—s) < 1: similar as (1). (3) Otherwise,

(Vs:1/a<s<n—1/a) 2%%420M=s) < gam (3)
always satisfied since 2% + 2Y < 27V if ¢ ¢y > 1.
e Branch on vertex of degree d > 3

(Vd:3<d<n-1) 2v0D 4 gan=l=d) < gan (4)
Dividing all these terms by 2%", the constraints become
27 poo(ml=d) < (5)

Compute optimum «
The minimum « satisfying the constraints is obtained by solving a convex mathematical program minimizing «
subject to the constraints (the constraint for d = 3 is sufficient as all other constraints are weaker).

Alternatively, set x := 2%, compute the unique positive real root of each of the characteristic polynomials
ca(z) = V4o t7d -1,

and take the maximum of these roots [Kullmann "99)].

T Qo
1.3803 0.4650
1.3248 0.4057
1.2852 0.3620
1.2555 0.3282
1.2321 0.3011

N O U W

Simple Analysis: Result

e use the Simple Analysis Lemma with ¢ = 2 and a = 0.464959

e running time of Algorithm mis upper bounded by O(n?) . 20-464959n — (§(20-4650-n) o ((1.3803")

v1 V2 U3 vy Vs Vg Up—1 Un

Lower bound

T(n)=T(n—-5)+T(n-23)
e for this graph, P2, the worst case running time is 1.1938..." - poly(n)

e Run time of algo mis is 2(1.1938™)

Worst-case running time — a mystery

What is the worst-case running time of Algorithm mis?
e lower bound 2(1.1938")
e upper bound O(1.3803")

2.2 Search Trees and Branching Numbers
Search Trees
Denote u(I) :=a - |I|.

p(11) p(12) aery
Example: execution of mis on a P2
/ ' \
n—3 n—2>5

Branching number: Definition
Consider a constraint
gu)—ar .. 4 gu(l)—ax < on(I)
Its branching number is
27 4 27
and is denoted by
(a1 ax).

Clearly, any constraint with branching number at most 1 is satisfied.

Branching numbers: Properties
Dominance For any a;,b; such that a; > b; for all i, 1 <17 <k,
(al,...,ak) S (bl,...,bk),

as 27 4. 4270 <270 4o 27 be,
In particular, for any a,b > 0,

either (a,a) < (a,b) or (b,b) < (a,b).
Balance If 0 < a < b, then for any € such that 0 < e < a,
(a,b) < (a—e,b+¢)

by convexity of 2%.

2.3 Measure & Conquer Analysis
e Goal

— capture more structural changes when branching into subinstances
e How?

— potential-function method, a.k.a., Measure & Conquer [Fomin, Grandoni, Kratsch *09)
e Example: Algorithm mis

— advantage when degrees of vertices decrease

Measure
Instead of using the number of vertices, n, to track the progress of mis, let us use a measure u of G.

Definition 6. A measure p for a problem P is a function from the set of all instances for P to the set of non
negative reals.

Let us use the following measure for the analysis of mis on graphs of maximum degree at most 5:
5
wa) =y wini,
i=0

where n; := [{v eV :d(v) = i}|.

Measure & Conquer Analysis
Lemma 7 (Measure & Conquer Lemma). Let
e A be a branching algorithm
e ¢ > 0 be a constant, and
e u(),n(-) be two measures for the instances of A,

such that on input I, A calls itself recursively on instances I, ..., I, but, besides the recursive calls, uses time
O(n(I)°), such that

2#(Il)+..+2ﬂ(lk) S2ﬂ([) (7)

Then A solves any instance I in time O(n(I)°+t) . 200,

Analysis of mis for degree at most 5
For u(G) = Z?:o w;n; to be a valid measure, we constrain that

wg >0 for each d € {0,...,5}

We also constrain that reducing the degree of a vertex does not increase the measure (useful for analysis of the
degree-1 simplification rule and the branching rule):

—wg +wg—1 <0 for each d € {1,...,5}

Lines is a halting rule and we merely need that it takes polynomial time so that we can apply Lemma [7}
Lines of mis need to satisfy (7).

The simplification rule removes v and its neighbor u. We get a constraint for each possible degree of u:

oG —wrimwa < gu(G) for each d € {1,...,5}
& g wimwa < 90 for each d € {1,...,5}
& —w; —wg <0 for each d € {1,...,5}
These constraints are always satisfied since wg > 0 for each d € {0,...,5}. Note: the degrees of u’s other neighbors

(if any) decrease, but this degree change does not increase the measure.

For lines BHZ of mis we consider two cases.

If u(G1) <1 (or (G —V(Gy)) < 1, which is handled similarly), then we view this rule as a simplification rule,
which takes polynomial time to compute mis(G1), and then makes a recursive call mis(G — V(Gy)). To ensure
that instances with measure < 1 can be solved in polynomial time, we constrain that

wq > 0 for each d € {3,4,5}

and this will be implied by other constraints.
Otherwise, ;¢(G1) > 1 and u(G — V(G1)) > 1, and we need to satisfy (7). Since u(G) = p(G1) + pu(G — V(G1)),
the constraints

Qu(G1) 4 ou(G=V(G1)) < 9u(@)
are always satisfied since the slope of the function 2% is at least 1 when > 1. (L.e., we get no new constraints on
Wiy .- - ,(,U5.)

Lines [8}{10] of mis need to satisfy (7). We know that in G — N[v], some vertex of N2[v] has its degree decreased
(unless G has at most 6 vertices, which can be solved in constant time). Define

(Vd:2<d<5) hg:= 22‘21(1 {w; —w;_1}

We obtain the following constraints:
oi(G)—wa =321, pi-(wi—wi—1) + oi(G)~wa—32{_, pi-wi—ha < 9u(&)

PEN 2—%1-2?:2 pi-(wi—w;—1) + 2—wd_2?:2 piwi—hq S 1
for all d,3 < d <5 (degree of v), and all p;,2 < i < d, such that 2?12 p; = d (number of neighbors of degree 7).

Applying the lemma
Our constraints

wg >0
—wg +wg—1 <0
2—wd—2?:2 pi-(wi—w;i—1) + 2—wd—2?:2 pirwi—ha <1

are satisfied by the following values:

1 0 0

2 025 0.25
3 035 0.10
4 0.38 0.03
5 0.40 0.02

These values for w; satisfy all the constraints and u(G) < 2n/5 for any graph of max degree < 5. Taking ¢ = 2
and 7(G) = n, the Measure & Conquer Lemma shows that mis has run time O(n3)2?"/> = 0(1.3196™) on graphs
of max degree < 5.

2.4 Optimizing the measure

Compute optimal weights
e By convex programming [Gaspers, Sorkin 2009
All constraints are already convex, except conditions for hgy

(Vd:2<d<5) hg:= 2rSniigd {w; —w;—1}
U

(\fi7(i 12 f;) f; d f; 5)]ld f; W; — Wi—1-
Use existing convex programming solvers to find optimum weights.
Convex program in AMPL

param maxd integer = 5;
set DEGREES := 0..maxd;

var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i

var h {DEGREES} >= 0; # weight for degree reductions from deg <= i

var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
gld] <= Wldl-wld-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
hld] <= Wwlil-w[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
27 (-W[3] -p2xgl2] -p3*gl[3]) + 2~ (-W[3] -p2*W[2] -p3*W[3] -h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
27 (-W[4] - p2xgl[2] - p3*xgl[3] - paxgl4l)
+ 2°(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;
subject to Degb {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :
p2+p3+p4+p5=5}:
27 (-W[5] - p2xgl[2] - p3*gl[3] - p4xgl4] - pb5*gl5])
+ 27 (-W[B] - p2xW[2] - p3*W[3] - p4xW[4] - p5*W[5] - h[5]) <=1;

Optimal weights

W; h;

0 0
0.206018 | 0.206018
0.324109 | 0.118091
0.356007 | 0.031898
0.358044 | 0.002037

TR W N |,

e use the Measure & Conquer Lemma with u(G) = Z?Zl w;n; <0.358044 -n, ¢ =2, and n(G) =n

e mis has running time O(n3)20-358044m = ((1.2817™)

2.5 Exponential Time Subroutines

Lemma 8 (Combine Analysis Lemma). Let
e A be a branching algorithm and B be an algorithm,
e ¢ > 0 be a constant, and

o u(-), 1 (+),n(-) be three measures for the instances of A and B,

such that p/'(I) < u(I) for all instances I, and on input I, A either solves I by invoking B with running time
O(n(I)ctt) . 2» (D or calls itself recursively on instances I, ..., I, but, besides the recursive calls, uses time
O(n(I)°), such that

2#(Il)+..+2ﬂ(1k) Sz“([) (9)

Then A solves any instance I in time O(n(I)t1) - 201,

Algorithm mis on general graphs

e use the Combine Analysis Lemma with A = B = mis, ¢ = 2, u(G) = 0.35805n, u/'(G) = Z§:1 w;n;, and
n(G) =n

e for every instance G, u/'(G) < u(G) because Vi, w; < 0.35805
e for each d > 6,

(0.35805, (d + 1) - 0.35805) < 1

e Thus, Algorithm mis has running time O(1.2817") for graphs of arbitrary degrees

2.6 Structures that arise rarely

Rare Configurations

e Branching on a local configuration C' does not influence overall running time if C' is selected only a constant
number of times on the path from the root to a leaf of any search tree corresponding to the execution of the
algorithm

e Can be proved formally by using measure

, w(I)+ ¢ if C may be selected in the current subtree
w(I) = :
w(I) otherwise.

Avoid branching on regular instances in mis

else
Select v € V such that
(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of
minimum degree
return max (1 + mis(G — N[v]), mis(G — v))

New measure:

5
v (G) = u(GQ) + Z[G has a d-regular subgraph] - Cy
d=3

1if F true

where Cy,3 < d < 5, are constants. The Iverson bracket [F] =]
0 otherwise

Resulting Branching numbers
For each d,3 < d <5 and all p;,2 < ¢ < d such that Z?:zpi =d and pg # d,

d d
(wd +) i (wi—wisy),wa+ Y pi - wi + hd)~
=2

=2

All these branching numbers are at most 1 with the optimal set of weights

Result

w; h;

0 0
0.207137 | 0.207137
0.322203 | 0.115066
0.343587 | 0.021384
0.347974 | 0.004387

TR W O | .

Thus, the modified Algorithm mis has running time O(20-3480") = 0(1.2728").
Current best algorithm for MIS: O(1.1996™) [Xiao, Nagamochi "13]

3 Further Reading

e Chapter 2, Branching in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

e Chapter 6, Measure & Conquer in Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer, 2010.

e Chapter 2, Branching Algorithms in Serge Gaspers. Exponential Time Algorithms: Structures, Measures,
and Bounds. VDM Verlag Dr. Mueller, 2010.

10

	Introduction
	Maximum Independent Set
	Simple Analysis
	Search Trees and Branching Numbers
	Measure & Conquer Analysis
	Optimizing the measure
	Exponential Time Subroutines
	Structures that arise rarely

	Further Reading

