
COMP4418: Knowledge
Representation and Reasoning

Logic and Prolog

Maurice Pagnucco
School of Computer Science and Engineering

University of New South Wales

NSW 2052, AUSTRALIA
morri@cse.unsw.edu.au

COMP4418 c©UNSW, 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 1

Logic and Prolog

� Prolog stands for programming in logic

� How does the implementation of Prolog relate to logic?

� Prolog is based on resolution theorem proving in first-order logic

� In this lecture we will look at the relationship between automated

reasoning in first-order logic and Prolog

� References:

◮ Ivan Bratko, Prolog Programming for Artificial Intelligence,

Addison-Wesley, 2001. (Chapter 2)

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 2

Overview

� Problems

� Undecidability of first-order logic

� Horn Clauses

� SLD Resolution

� Prolog

� Back Chaining

� Forward Chaining

� Negation as Failure

� Conclusion

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 3

Resolution — Problem 1

� We have seen that the resolution rule is sound:

If Γ ⊢ φ, then Γ |= φ

� However, the resolution rule is not complete in general:

{¬P} |= ¬P∨¬Q but cannot show this using resolution ({¬P} ⊢
¬P∨¬Q)

� Resolution is sound and complete when used as a refutation system

though:

Γ ⊢� if and only if Γ |=�

� Therefore, resolution should be used as a refutation system as we

have done so far

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 4

Resolution — Problem 2

� KB = {P(f (x)→ P(x)}

� Q = P(a)?

� Obviously KB 6|= Q

� However, let us attempt to show this using resolution

~P(f(x)) v P(x) ~P(a)

~P(f(a))

~P(f(f(a))

~P(f(f(f(a)))

...

x/a

x/f(a)

x/f(f(a))

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 5

Undecidability of First-Order Logic

� Can we determine in general when this problem will arise?

� Answer: no!

� There is no general procedure

if (KB unsatisfiable)

return Yes; Halt

else return No; Halt

� Resolution is refutation complete so if KB is unsatisfiable search tree

will contain empty clause somewhere

� Can find empty clause using breadth-first search (why?) but if the

search tree does not contain the empty clause the search may go on

forever

� Even in the propositional case (which is decidable), complexity of

resolution is O(2n)

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 6

Horn Clauses

Idea: use less expressive language

� Review

◮ Literals — atomic sentence or its negation

◮ Clause — disjunction of literals

� Horn Clause – at most one positive literal (e.g., ¬P∨Q, P∨¬Q∨R∨
S)

◮ Essentially represents a formula of the form A1∧ . . .∧An→C

◮ That is, if A1 and . . . and An, then C

� Definite (Positive) Clause – exactly one positive literal

� Negative Clause – no positive literals

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 7

SLD Resolution — ⊢SLD

� Selected literals Linear form Definite clauses resolution

� SLD derivation of a clause C from a set of clauses KB is a sequence

of clauses such that

1. First clause of sequence comes from KB

2. Each intermediate clause Ci is derived by resolving the previous

clause Ci−1 and a clause from KB

3. The last clause in the sequence is C

C1

...

C2

C

KB

� For set of Horn clauses KB: KB ⊢� if and only if KB ⊢SLD �

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 8

Prolog

� Horn clauses in first-order logic (facts and rules)

� SLD resolution

� Depth-first search strategy with backtracking

� User control

◮ Ordering of predicates in Prolog database (facts and rules)

◮ Ordering of subgoals in body of a rule

◮ Cut (!) operator

◮ Negation as failure

� That is, Prolog is a restricted form of first-order logic (Horn clauses)

and puts more control of the theorem proving process into the hands

of the programmer allowing them to use problem-specific knowledge

to reduce search

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 9

Backward Chaining

(Brachman & Levesque) Show whether Horn knowledge base satisfiable
� Goal driven

� Start with hypothesis and work backwards using rules in knowledge

base to easily confirmed findings

� Check satisfiabilty of set of Horn clauses:

prove(Q1 ∧ . . .∧Qn) {
if n = 0 return yes % empty clause

for each R ∈ KB do

if R = Q1 ← G1 ∧ . . .∧Gm and prove(G1 ∧ . . .∧Gm ∧
Q2∧ . . .∧Qn)

then return yes

return no }

� Depth-first, left-right, backward chaining

� Strategy applied by Prolog

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 10

Forward Chaining

(Brachman & Levesque) Determine whether Horn knowledge base entails

query: KB |= Q

� Data driven

� 1. if Q marked solved then return yes

2. if G← G1∧ . . .∧Gm ∈ KB and G1, . . . ,Gm marked solved

and G not marked solved

then mark G solved; goto 1

else return no

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 11

Negation as Failure

� Prolog does not implement classical negation

� Prolog not is known as negation as failure

� not(G) :- G, !, fail. % If G succeeds return no

not(G). % else return yes

� KB ⊢ not(G) — cannot prove G

� KB ⊢ ¬G — can prove ¬G

� They are not the same

� Negation as failure is finite failure

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

COMP4418, Monday 6 August, 2018 Reasoning Under Uncertainty 12

Conclusion

� First-order logic is an expressive formal language and allows for

powerful reasoning

� Theorem proving is undecidable in general

� Other options:

◮ Search heuristics (ordering of predicates, subgoals; depth-first

search)

◮ Sacrifice expressivity (e.g., Horn clauses although still undecid-

able in first-order case)

◮ User control (cut operator)

� Prolog is based on SLD resolution in first-order Horn logic and allows

programmer to use knowledge about domain to control search

� Blend of theory and pragmatics

COMP4418 c©UNSW, 2018 Generated: 22 July 2018

