
INTRODUCTION TO REQUIREMENT
ENGINEERING IN SENG2021

BY:
MORTADA AL-BANNA

AGENDA

Why requirement Engineering

Project Scoping(Problem Statement)

Features and how to present them

User Stories

DISCLAIMER

• Part of the material presented here are taken from the SENG1031 lectures

presented by Sci Prof. Boualem Benatallah.

• No “Actual” software code was hurt during the creation of these slides.

Image Curtesy of https://medium.com/omarelgabrys-blog/requirements-engineering-introduction-part-1-

6d49001526d3

SOME REFRESHERS (REF1 & REF2)

• User Requirement: criteria/constraints to satisfy (natural language, other

artefacts / use cases), problem statements / customer needs

• System Requirement: detailed descriptions (functions, constraints), services

and operational constraints, interface/contract between

customer/development team (e.g., class diagrams, state diagrams, functions,

pre/post conditions, business rules)

• Functional Requirement: the main functions provided by the software (e.g.,

send messages, receive messages, add courses)

• Non Functional Requirement: the constrains on the functions provided by the

software (e.g., security, performance, reliability)

PROBLEM STATEMENT (PART1)

• Few sentences (e.g., one or 2) to describe specific user/customer

needs

• Identify a problem from customer perspective

• Understand the current state of the world

• Problem statements are not bug reports (the problems may never

been raised before, problems were not in the requirements of

existing projects), focus on identifying new requirements (not bug

fixes, which errors of implementation not missing requirements)

PROBLEM STATEMENT (PART2)

• Problem statements can be enriched with references, supporting materials

(e.g., market research reports, videos, government policy statements), but

should be made clear and separate from supporting artefacts

• Problem statements are input to what is called feature statements or

scenarios. Features / scenarios describe the state of the world when the

project is done (e.g., the project will support category, interests based search

in addition to keyword search, the project will support search across 4 most

popular MOOC platforms).

EXAMPLE OF A GOOD PROBLEM STATEMENT

• There is no feedback system for a particular course.

• There is no reputation / popularity system for users or course instructors.

• There is no general forum for the students to interact with each other, only a

forum for each individual course.

• There is no Intuitive notification system.

• Major social hubs are not integrated into the platform

Curtesy of https://shonaliburke.com/friday-funny-brainstorming/

Brainstorming

FEATURES (REF3)

• Describe a way to solve a problem mentioned in the problem statement

• Behaviour oriented : focus on what the software will do when delivered

• Customer / Engineering collaboration : requirements created jointly between

customer and engineering team, using, controlled natural language

• Simple to understand, testable, have business value

• Used as input in software management tools, e.g., to review, to generate

input/output test cases, to monitor project progress

• Problem statement VS feature: current state of the world VS the state of the

world when the project is delivered.

FEATURE EXAMPLE

General project information : MOOC system (called

myMOOC) provides access to courses by groups of people

involved in those courses.

Feature: As a teacher, I can access myMOOC to search and

manage courses

COMPLEX FEATURES

•Complex feature: As a student, I can search courses, enrol in a

course or drop it (complex feature)

•Concrete/small features

1: As a student, I can search courses by tags

2: As a student, I can enrol in a course

3: As a student, I can drop a course

FEATURES NOTATION

•Based on Connextra notation, a feature is described as

follows : role, goal, task

Feature name

As a [the role of the user]

So that [I can achieve some goal]

I want to [do some task]

FEATURE EXAMPLE USING NOTATION

Feature Search Tutor by reputation

As a Student

So that I can find a qualified Tutor

I want to search Tutors by their reputation scores

GOOD FEATURES

• SMART principles are one way to write good features

• SMART stands for:

– Specific

– Measurable

– Achievable

– Relevant

– Time-Boxed

EXAMPLES OF GOOD VS BAD FEATURES (PART1)

• Specific

– Example of a vague story:

Student can search for a tutor

– Example of a specific story:

Student can search for a lecturer by their reputation score

EXAMPLES OF GOOD VS BAD FEATURES (PART2)

•Measurable

– Example of a non-measurable story:

Searching tutors should be fast.

– Example of a measurable story:

When searching for a tutor, the results should appear

within 5 seconds.

EXAMPLES OF GOOD VS BAD FEATURES (PART3)

• Time-Boxed (time budget, may be complex, prioritize,

reschedule, re-negotiate dead-lines, re-negotiate features,

scale down)

•Achievable

– Realistic in terms of time assigned (can be implemented in one

iteration. If not may need to decompose into smaller features)

EXAMPLES OF GOOD VS BAD FEATURES (PART4)

• Relevant:

• resolving one of the problems in the problem statement

• Adding business value

• Example:

• Why searching for reputable tutors? To maximize quality of courses.

USER STORIES (REF1 &REF2)

• User story: feature + scenarios

• Stories: concept in HCI, paper cards, easy to understand and

manipulate, used for brain storming, prioritizing

• Stories: few sentences written in non technical terms, yet ready to

be used as input for various project tasks, focus on stakeholder

perspective

•Will refine features in future phases of the project (e.g., use case

diagrams, input/output interfaces, UI prototypes)

STORIES (CONTIN’D)

• Captures a feature rationale (not detailed requirements) n Business

value (customer oriented, a feature that customer needs)

• Small (few person / month to deliver the feature)

• Independent functional requirements (no overlaps between stories)

• Testable by customer

• Effective project management (more accurate estimate of progress,

iterative development cycle, manage priorities)

SCENARIO

• A scenario

– Explain how a single feature is used.

– consists of a set of (3 to 8) steps.

• Each step of a scenario starts with a keyword, i.e.,

– GIVEN (pre-condition/state)

– WHEN (Action/Event)

– THEN (Transition / consequence of action)

– AND (conjunction)

SCENARIO EXAMPLE
• Feature: student can search tutors by reputation score.

• Scenario: Search Tutors by reputation (cloud be used to generate UI

interactions/mock-ups, state machine)

GIVEN I am on myMOOC home page

WHEN I click on “search for a Tutor”

THEN I should be on “search for a Tutor” page

WHEN I fill in “reputation’’ higher than” “0.9”

AND I press “Search” button

THEN I should see all tutors whose reputation score higher than 0.9

WRITING GOOD USER STORIES

• Write for broad audience: e.g., people who are not in your team. Will

they understand?

• Complementary to other techniques, e.g., SMART user stories

• Reuse/analogy: e.g., search and analysis of similar services/products,

reuse of feature descriptions (at least style) from previous projects.

• Avoid obscure language: e.g. technical jargon (unless internal project

and agreed upon by team), mixing requirements with

background/detailed design documentation

PROTOTYPING

•Visual elements (UI mostly)

•Web, mobile, desktop, APIs

•Focus on interactions with actors

•Low fidelity (sketching), high fidelity (mock-ups,

wireframes)

WHAT IS PROTOTYPE ?

• Whiteboard sketching

• Paper / pencil sketching, post-its

• Mockups (domain specific and general tools, e.g., photoshop, balsamiq,

InVision, Visio, ppt)

• HTML / CSS (could be time consuming as it requires building details of UI

elements, both content, state, look, style).

• Software dev. productivity is improving (reuse /templates/ themes / examples

/ code generation) but UI dev is still tedious task)

WHY PROTOTYPING ?

• Feedbacks from customers

• Save time, cost (cheaper to build a prototype than the real system)

• It is easier and easier to build the real UI (e.g., HTML/CSS), but

still cheaper to start with prototypes

•More applicable to features where actors use UI elements to

interact with the system

• But in the new era of back end as a service, prototyping will also

be used to some extend for APIs, apps as the actors.

FIDELITY IN PROTOTYPING

• Low fidelity:

– Called Lo-Fi UI (sketches, concept from HCI community)

– Engage non technical users

– Kinder-garden tools (papers, crayons sketches)

• High fidelity?

- Detailed UI elements (wireframes, mockups)

- Look and feel of real system

LO-FI UI: STORYBOARDS

• Sketches: sketch of feature UI

• Features (steps in a use case) – UI sketches: explicit relationship,

can be 1 to 1, 1 to many, many to 1

• UI involve interactions with actors, transitions from UI components

to other to understand a complex UI involving several UI

components

• Storyboards: a concept borrowed from filmakers

• Storyboards in film making: sequence of scenes (called a script),

focus on interactions (not scene details)

UI STORYBOARDS

• Film storyboards: sequence of events/scenes

• UI storyboards: trees/graphs of UI screens (use cases involve

sequences, decision points, alternative flows)

• Various notations can used to represent UI storyboards (e.g., UML

activity diagrams, BPMN process models, and even UML state

machines)

• Elements of storyboards: nodes (UI component sketches including:

pages, parts of pages, input / output forms, popup menus), transitions

(interaction between UI sketches)

LO-FI - UI COMPONENT
SKETCH (SOURCE:
REF. 2, ONE
INTERACTION, ONE
STEP)

LO-FI - UI STORYBOARD (SOURCE: REF. 2, BIG
PICTURE, USE CASE)

HIGH FIDELITY PROTOTYPES

• Wireframes / mockups (various tools, as an example Lucidchart)

MULTI-PAGES UI COMPONENT

HOTSPOT: TRANSITION, SOURCE: “PAGE”, TARGET:
``PAGE’’

GOOD PROTOTYPES - GUIDELINES

• Select customer representative (through workshops, research, customer site

visits, etc)

• Start from features and use cases

• Start from basic flows, then complex flow (alternative flows)

• Use reviews to improve (project leader, business analyst, developers, customer

perspectives – business, customer, engineering)

• Identify issues, resolve issues, iterate

• Spend short time on lo fi sketches, mockups for final UIs (input to code –

HTML/CSS)

REFERENCES

• (Ref. 1) Scott Berkun. The art of project management. O'Reilly 2005

• (Ref. 2) Leszek A. Maciaszek: Requirements analysis and system design (2.

ed.), Addison-Wesley, 2005

• (Ref. 3) Software Engineering. Ian Sommerville, Addison-Wesley, 9. ed., 2010,

• (Ref. 4) inGenius: A Crash Course on Creativity, by Tina Seelig

FIRST DELIVERABLE

• Describe few problem statements you are going to solve in your

project

• Identify the features that you are going to implement to solve the

problems

• Describe user stories

• Low Fidelity prototype

• High Fidelity Prototype (UI elements and how they will be interacting)

FIRST DELIVERABLE (CONT’D)

•Group effort.

•Meeting with mentor to refine ideas and get feedback.

•A detailed specification will be released soon.

Q&A

