
1

Review of Basic Software Design

Concepts

Fethi Rabhi

SENG 2021

2

Topics

• The development process

– Planning

– Designing

– Implementing

3

1. The development process

• How to organise activities related to the

creation, delivery and maintenance of

software

• There are some fairly common processes

– Traditional methods: Waterfall

– Agile methods: Scrum

• 3 major steps: A. Requirements analysis

B. Design

C. Build and Deploy

Our focus is here

4

A. Requirements analysis and specification

• Can involve

– Formal specifications

– Use cases (UML use cases)

– Epics and Stories (Scrum)

• Which one(s) to use

– Can be a mixture

– Depends on type of system

5

B. Design

• Next phase after requirements analysis

• First step in building the system

• Design is a process

• Design operates according to a specific

methodology (e.g. OO)

• The design can be represented using a

notation (e.g. UML)

• Methodologies/notations are usually

supported by tools

6

Requirements

analysis

Design

Implementation Testing

Maintenance

Software architecture

Detailed design

7

Software architectures

• Equivalent to design at the highest level

• Essential for large applications: defines “parts” of

the system and how these parts are assembled

• Architecture satisfies design goals e.g.:

– Extensibility (ability to add new features)

– Adaptability (accommodating changing reqs.)

– Simplicity (ease of understanding/implementing)

– Efficiency (time/space)

8

Decomposition criteria

• Decomposition into modules/components/packages

etc. is of critical importance in the design activity

– Cohesion is the degree to which communication takes

place among the module’s elements

– Coupling describes the degree to which modules

communicate with each other.

• Low coupling/high cohesion is essential for

managing changes

9

Architectural patterns

• Used for designing software architectures, as a
first step in the design activity

• An architectural pattern expresses a fundamental
structural organization schema for software
systems

• Provides:

– set of predefined components (subsystems)

– a specification of their relationships

– rules and guidelines for organizing the relationships
between them

10

Common architectural patterns

• Façade

• Layers

• Observer

• Adapter

11

Façade pattern

• Useful for modelling client-server architectures

Client
Façade

(visible)

Component

(not visible)

Component

Component

12

Characteristics of the pattern

• Low coupling between the two participating

components

• Secure. Easy to maintain.

Web

Browser

Web

Server

Application

Server

Authentification

Database

13

Layers pattern

• Useful for large systems requiring decomposition

Layer 1

Layer 2

Layer 3

Layer 4

14

Characteristics of the pattern

• Decomposition based on levels of abstraction

• Easier to manage and maintain than monolithic

code

• Allows the construction of complex components

out of simpler ones

• Examples: OSI layers in networking, CORBA,

multi-tier architectures

15

Example: 3-tier software architecture

User Interface

Data storage

Business Logic

Database

16

Observer pattern

• Useful for modelling client updates

Client Source
Update

Register

Client

Client

Client

17

Characteristics of the pattern

• Allows observers to be added/removed without

disrupting other observers

• Potential to reduce network traffic

Broker
Stock

Market

Broker

Broker

Share value

18

Adapter pattern

• Useful for the integration of legacy code

Client Interface

Legacy

system

Request

Adaptor

19

Detailed Design

• Not one but many!

– Successions of refinements from the overall

architecture

– Involves modelling of certain elements to make

implementation easier

• Design coverage
– Function

– Structure

– Behaviour

– Information

20

Detailed Design

• Detailed design is usually closely associated with

the implementation language used

• If using an OO language (e.g. Java)

– Some design elements can be expressed in the Unified

Modelling Language (UML)

– UML is an OMG standard

– UML contains lots of notations

• If using a database

– Information structure can be modelled using a

conceptual modelling notation

21

UML Notations

Use case view

Design view Process view Implementation Deployment

Class/

Object

diagrams

Sequence/Statechart

/Activity diagrams

Component/

Package

diagrams

Deployment

diagrams

Software

Architecture

UML

Use-case

diagrams

22

Typical OO design

• Expand use cases (real use cases)

• Develop collaboration or sequence or

statechart diagrams (just use 1 of them!)

• Defining classes (in parallel)

• Each class needs responsibilities assigned to

it

23

Data modelling

• Identify domain objects, their attributes and

associations between objects

• Normally, combination ER-

diagram/sequence diagrams

• Relational models (for SQL databases)

• Formal methods: more powerful and

unambiguous

24

User Interface and visualisation design

• Helping users to interact with systems

– Intuitive interfaces

– Diversity in user devices

– Easy to learn

• Visualisation

– Viewing complex data

– Infographics

25

C. Build and Deploy phase

• Start thinking about implementation

• Identify languages/platforms to be used

• “Packaging” of classes into programs.

• Allocating packages to platforms

(deployment)

26

There are two ways of constructing a

software design: one way is to make it

so simple that there are obviously no

deficiencies, and the other way is to

make it so complicated that there are

no obvious deficiencies. The first

method is far more difficult.

C.A.R. Hoare

Focus of this workshop

27

System Scope and Specification

Software Design
Interface

Design

Implementation Considerations

Software Architecture

What needs to be in the design

• Software architecture

– Diagram showing components

• Software Design

– Data Model (e.g. ER Diagram)

– Process View (e.g. sequence diagrams)

28

29

Example of process view

Create Invoice

Create

Invoice

Create Invoice

Invoice:createInvoice(despAdv,PriceList)

INITIAL

SEQUENCE

DIAGRAM
DETAILED

SEQUENCE DIAGRAM

Create invoice (parameters)

Invoice

DA:despAdvPriceList

i:Invoice

Create Invoice

createInvoice (DA,PriceList)

Return(i)

Invoice

produces

despAdv

uses

PriceList

uses

User story

Architectural

component

30

Design tools

• Functions

– Modelling design artefacts

– Managing/sharing models

• Tools

– For architecture, people tend to use a drawing

tool

– For detailed design, several UML tools exist

(e.g. https://www.draw.io/)

– Benefits: consistency checks, automatic code

generation

– Disadvantages: steep learning curve

https://www.draw.io/

31

Conclusions

• Design is next activity after requirement

analysis

• Divided into 2 stages: architectural design

and detailed design

– Architectural design facilitated by the use of

design patterns

– Detailed design is an iterative activity: check

requirements satisfaction, think about

implementability

32

Further reading

• Braude, Software Engineering: An Object-Oriented

Perspective, J. Wiley, 2001 [Chapter 5]

• Buschmann et al., Pattern-Oriented Software Architecture:

A System of Patterns, J. Wiley, 1996.

• Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.

• Larman, Applying UML and Patterns: an Introduction to

Object-Oriented Analysis and Design, Prentice Hall, 1998.

• Bruegge and Dutoit, Object-Oriented Software

Engineering: Conquering Complex and Changing Systems,

Prentice Hall, 2000.

