
COMP1511
19T1 07tue

cs1511@
jashankj@

COMP1511 19T1
Week 7, Tuesday: Structure and Composition

Jashank Jeremy
jashank.jeremy@unsw.edu.au

references and indirection
structured data

COMP1511
19T1 07tue

cs1511@
jashankj@

Administrivia
Don’t panic!

Assignment 1: Coco
out now … due 7 April 23:59:59

Weekly Test #4
due tomorrow, 3 April 23:59:59

No Marc!
on week06tue, week06thu, week07tue

lectures by Jashank, instead.

COMP1511
19T1 07tue

cs1511@
jashankj@

Memory is…

i
0x4000

0 0 0 42

ip
0x4004

0 0 40 00

memory is a linear array of lots of boxes: bytes

variables are a group of bytes:
int i = 42;

variables have size, location

variables can store locations of other variables
int *ip = &i;

COMP1511
19T1 07tue

cs1511@
jashankj@

Memory is…

str
0x4000

H e l l o ! \0

memory is a linear array of lots of boxes: bytes

arrays are contiguous sequences of variables:
char str[] = "Hello!";

pointers and arrays are mostly interchangeable;
‘*’ is mostly equivalent to ‘[]’

arithmetic on pointers is well-defined but horrific

COMP1511
19T1 07tue

cs1511@
jashankj@

New Operations
Reference and Dereference

&
reference, address-of;

‘where is this variable in memory?’

*
dereference, indirection

‘what’s at this location in memory?’

sizeof
‘how big is this variable or type?’

COMP1511
19T1 07tue

cs1511@
jashankj@

No Argument From Me

main is a rather peculiar function.

int main(void);

Except… that’s not the only way to do it.

int main(int argc, char *argv[]);

argc: the argument count;
argv: the argument vector

COMP1511
19T1 07tue

cs1511@
jashankj@

No Argument From Me

main is a rather peculiar function.

int main(void);

Except… that’s not the only way to do it.

int main(int argc, char *argv[]);

argc: the argument count;
argv: the argument vector

COMP1511
19T1 07tue

cs1511@
jashankj@

No Argument From Me
What’s That ‘argv’ Thing?

[0]

[1]

[2]

[3]

[4]

. / m y p r o g \0

- o \0

d c c \0

d c c . c \0

NULL

COMP1511
19T1 07tue

cs1511@
jashankj@

struct
Record Types; Product Types; Tuple Types

Structured types let us compose
our own complex expressions.

struct tag {
member-type member-name,
…

};

