
COMP2111 Week 1
Term 1, 2019

Discrete Mathematics Recap

1

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

2

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

3

Sets

A set is defined by the collection of its elements.
Sets are typically described by:
(a) Explicit enumeration of their elements

S1 = {a, b, c} = {a, a, b, b, b, c}
= {b, c , a} = . . . three elements

S2 = {a, {a}} two elements

S3 = {a, b, {a, b}} three elements

S4 = {} zero elements

S5 = {{{}}} one element

S6 = { {}, {{}} } two elements

4

(b) Specifying the properties their elements must satisfy; the
elements are taken from some ‘universal’ domain, U . A typical
description involves a logical property P(x)

S = { x : x ∈ U and P(x) } = { x ∈ U : P(x) }

We distinguish between an element and the set comprising this
single element. Thus always a 6= {a}.
Set {} is empty (no elements);
set {{}} is nonempty — it has one element.
There is only one empty set; only one set consisting of a single a;
only one set of all natural numbers.

5

(c) Constructions from other sets (already defined)

Union, intersection, set difference, symmetric difference,
complement

Power set Pow(X) = { A : A ⊆ X }
Cartesian product (below)

Empty set ∅
∅ ⊆ X for all sets X .

S ⊆ T — S is a subset of T ; includes the case of T ⊆ T
S ⊂ T — a proper subset: S ⊆ T and S 6= T

NB

An element of a set and a subset of that set are two different
concepts

a ∈ {a, b}, a 6⊆ {a, b}; {a} ⊆ {a, b}, {a} /∈ {a, b}

6

Cardinality

Number of elements in a set X (various notations):

|X | = #(X) = card(X)

Fact

Always |Pow(X)| = 2|X |

|∅| = 0 Pow(∅) = {∅} |Pow(∅)| = 1
Pow(Pow(∅)) = {∅, {∅}} |Pow(Pow(∅))| = 2 . . .

|{a}| = 1 Pow({a}) = {∅, {a}} |Pow({a})| = 2 . . .

[m, n] — interval of integers; it is empty if n < m
|[m, n]| = n −m + 1, for n ≥ m

7

Sets of Numbers

Natural numbers N = {0, 1, 2, . . .}
Positive integers {1, 2, . . .}
Common notation N>0 = Z>0 = N \ {0}

Integers Z = {. . . ,−n,−(n − 1), . . . ,−1, 0, 1, 2, . . .}
Rational numbers (fractions) Q =

{
m
n : m, n ∈ Z, n 6= 0

}
Real numbers (decimal or binary expansions) R
r = a1a2 . . . ak . b1b2 . . .

8

Intervals of numbers (applies to any type)

[a, b] = {x |a ≤ x ≤ b}; (a, b) = {x |a < x < b}

[a, b] ⊇ [a, b), (a, b] ⊇ (a, b)

NB

(a, a) = (a, a] = [a, a) = ∅; however [a, a] = {a}.

Intervals of N,Z are finite: if m ≤ n

[m, n] = {m,m + 1, . . . , n} |[m, n]| = n −m + 1

9

Set Operations

Union A ∪ B; Intersection A ∩ B

Note that there is a correspondence between set operations and
logical operators (to be discussed later)

We say that A,B are disjoint if A ∩ B = ∅

NB

A ∪ B = B ↔ A ⊆ B A ∩ B = B ↔ A ⊇ B

10

Other set operations

A \ B — difference, set difference, relative complement
It corresponds (logically) to a but not b

A⊕ B — symmetric difference

A⊕ B
def
= (A \ B) ∪ (B \ A)

It corresponds to a and not b or b and not a; also known as
xor (exclusive or)

Ac — set complement w.r.t. the ‘universe’ U
It corresponds to ‘not a’

11

Laws of Set Operations

Commutativity A ∪ B = B ∪ A
A ∩ B = B ∩ A

Associativity (A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Distribution A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Identity A ∪ ∅ = A
A ∩ U = A

Complementation A ∪ (Ac) = U
A ∩ (Ac) = ∅

12

Other useful set laws

The following are all derivable from the previous 10 laws.
Idempotence A ∩ A = A

A ∪ A = A
Double complementation (Ac)c = A

Annihilation A ∩ ∅ = ∅
A ∪ U = U

de Morgan’s Laws (A ∩ B)c = Ac ∪ Bc

(A ∪ B)c = Ac ∩ Bc

13

Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

14

Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

15

Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

16

Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

17

Example (Idempotence of ∪)

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

18

A useful result

Definition

If A is a set defined using ∩, ∪, ∅ and U , then dual(A) is the
expression obtained by replacing ∩ with ∪ (and vice-versa) and ∅
with U (and vice-versa).

Theorem (Principle of Duality)

If you can prove A1 = A2 using the Laws of Set Operations then
you can prove dual(A1) = dual(A2)

Example

Absorption law: A ∪ (A ∩ B) = A

Dual: A ∩ (A ∪ B) = A

19

Application (Idempotence of ∩)

Recall Idempotence of ∪:

A = A ∪ ∅ (Identity)
= A ∪ (A ∩ Ac) (Complementation)
= (A ∪ A) ∩ (A ∪ Ac) (Distributivity)
= (A ∪ A) ∩ U (Complementation)
= (A ∪ A) (Identity)

20

Application (Idempotence of ∩)

Invoke the dual laws!

A = A ∩ U (Identity)
= A ∩ (A ∪ Ac) (Complementation)
= (A ∩ A) ∪ (A ∩ Ac) (Distributivity)
= (A ∩ A) ∪ ∅ (Complementation)
= (A ∩ A) (Identity)

21

Cartesian Product

S × T
def
= { (s, t) : s ∈ S , t ∈ T } where (s, t) is an ordered pair

×n
i=1Si

def
= { (s1, . . . , sn) : sk ∈ Sk , for 1 ≤ k ≤ n }

S2 = S × S , S3 = S × S × S , . . . , Sn = ×n
1S , . . .

∅ × S = ∅, for every S
|S × T | = |S | · |T |, | ×n

i=1 Si | =
∏n

i=1 |Si |

22

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

23

Formal Languages

Σ — alphabet, a finite, nonempty set

Examples (of various alphabets and their intended uses)

Σ = {a, b, . . . , z} for single words (in lower case)
Σ = { ,−, a, b, . . . , z} for composite terms
Σ = {0, 1} for binary integers
Σ = {0, 1, . . . , 9} for decimal integers

The above cases all have a natural ordering; this is not required in
general, thus the set of all Chinese characters forms a (formal)
alphabet.

24

Definition

word — any finite string of symbols from Σ
empty word — λ (sometimes ε)

Example

w = aba, w = 01101 . . . 1, etc.

length(w) — # of symbols in w
length(aaa) = 3, length(λ) = 0
The only operation on words (discussed here) is concatenation,
written as juxtaposition vw ,wvw , abw ,wbv , . . .

NB

λw = w = wλ
length(vw) = length(v) + length(w)

25

Notation: Σk — set of all words of length k
We often identify Σ0 = {λ}, Σ1 = Σ
Σ∗ — set of all words (of all [finite] lengths)
Σ+ — set of all nonempty words (of any positive length)

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . . ; Σ≤n =
n⋃

i=0

Σi

Σ+ = Σ1 ∪ Σ2 ∪ . . . = Σ∗ \ {λ}

A language is a subset of Σ∗. Typically, only the subsets that can
be formed (or described) according to certain rules are of interest.
Such a collection of ‘descriptive/formative’ rules is called a
grammar.

Examples: Programming languages, Database query languages

26

Example (Decimal numbers)

The “language” of all numbers written in decimal to at most two
decimal places can be described as follows:

Σ = {−, ., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Consider all words w ∈ Σ∗ which satisfy the following:

w contains at most one instance of −, and if it contains an
instance then it is the first symbol.
w contains at most one instance of ., and if it contains an
instance then it is preceeded by a symbol in
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and followed by either one or two
symbols in that set.
w contains at least one symbol from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

NB

According to these rules 123, 123.0 and 123.00 are all (distinct)
words in this language.

27

Example (HTML documents)

Take Σ = {“<html>”, “</html>”, “<head>”, “</head>”,
“<body>”, . . .}.
The (language of) valid HTML documents is loosely described
as follows:

Starts with “<html>”

Next symbol is “<head>”

Followed by zero or more symbols from the set of HeadItems
(defined elsewhere)

Followed by “</head>”

Followed by “<body>”

Followed by zero or more symbols from the set of BodyItems
(defined elsewhere)

Followed by “</body>”

Followed by “</html>”

28

Set Operations for Languages

Languages are sets, so the standard set operations (∩, ∪, \, ⊕,
etc) can be used to build new languages.
Two set operations that apply to languages uniquely:

Concatenation (written as juxtaposition):
XY = {xy : x ∈ X and y ∈ Y }
Kleene star: X ∗ is the set of words that are made up by
concatenating 0 or more words in X

29

Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

30

Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

31

Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

32

Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

33

Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

34

Set Operations for Languages

Example

Let A = {aa, bb} and B = {λ, c} be languages over Σ = {a, b, c}.
A ∪ B = {λ, c , aa, bb}
AB = {aa, bb, aac, bbc}
AA = {aaaa, aabb, bbaa, bbbb}
A∗ = {λ, aa, bb, aaaa, aabb, bbaa, bbbb, aaaaaa, . . .}
B∗ = {λ, c , cc , ccc , cccc , . . .}
{λ}∗ = {λ}
∅∗ = {λ}

35

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

36

Relations and Functions

Relations are an abstraction used to capture the idea that the
objects from certain domains (often the same domain for several
objects) are related. These objects may

influence one another (each other for binary relations; self(?)
for unary)

share some common properties

correspond to each other precisely when some constraints are
satisfied

Functions capture the idea of transforming inputs into outputs.

In general, functions and relations formalise the concept of
interaction among objects from various domains; however, there
must be a specified domain for each type of objects.

37

Applications

Relations and functions are ubiquitous in Computer Science

Databases are collections of relations

Common data structures (e.g. graphs) are relations

Any ordering is a relation

Functions/procedures/programs compute relations between
their input and output

Relations are therefore used in most problem specifications and to
describe formal properties of programs.
For this reason, studying relations and their properties helps with
formalisation, implementation and verification of programs.

38

Relations

An n-ary relation is a subset of the cartesian product of n sets.

R ⊆ S1 × S2 × . . .× Sn

x ∈ R → x = (x1, x2, . . . xn) where each xi ∈ Si

If n = 2 we have a binary relation R ⊆ S × T .
(mostly we consider binary relations)
equivalent notations: (x1, x2, . . . xn) ∈ R ⇐⇒ R(x1, x2, . . . xn)
for binary relations: (x , y) ∈ R ⇐⇒ R(x , y) ⇐⇒ xRy .

39

Examples

Equality: =

Inequality: ≤, ≥, <, >, 6=
Divides relation: | (recall m|n if n = km for some k ∈ Z)

Element of: ∈
Subset, superset: ⊆, ⊂, ⊇, ⊃
Size functions (sort of): |·|, length(·)

40

Database Examples

Example (Course enrolments)

S = set of CSE students
(S can be a subset of the set of all students)
C = set of CSE courses
(likewise)
E = enrolments = { (s, c) : s takes c }

E ⊆ S × C

In practice, almost always there are various ‘onto’ (nonemptiness)
and 1–1 (uniqueness) constraints on database relations.

41

Example (Class schedule)

C = CSE courses
T = starting time (hour & day)
R = lecture rooms
S = schedule =

{ (c , t, r) : c is at t in r } ⊆ C × T × R

Example (sport stats)

R ⊆ competitions× results× years× athletes

42

n-ary Relations

Relations can be defined linking k ≥ 1 domains D1, . . . ,Dk

simultaneously.
In database situations one also allows for unary (n = 1) relations.
Most common are binary relations

R ⊆ S × T ; R = {(s, t) : “some property that links s, t”}

For related s, t we can write (s, t) ∈ R or sRt; for unrelated items
either (s, t) /∈ R or s 6Rt.
R can be defined by

explicit enumeration of interrelated k-tuples (ordered pairs in
case of binary relations);

properties that identify relevant tuples within the entire
D1 × D2 × . . .× Dk ;

construction from other relations.

43

Relation R as Correspondence From S to T

Given R ⊆ S × T , A ⊆ S , and B ⊆ T .

R(A)
def
= {t ∈ T : (s, t) ∈ R for some s ∈ A}

Converse relation R← ⊆ T × S :

R←
def
= {(t, s) ∈ T × S : (s, t) ∈ R}

R←(B) = {s ∈ S : (s, t) ∈ R for some t ∈ B}

Observe that (R←)← = R.

44

Binary Relations

A binary relation, say R ⊆ S × T , can be presented as a matrix
with rows enumerated by (the elements of) S and the columns by
T ; eg. for S = {s1, s2, s3} and T = {t1, t2, t3, t4} we may have • ◦ • •◦ • • •

• • ◦ ◦

45

Relations on a Single Domain

Particularly important are binary relationships between the
elements of the same set. We say that ‘R is a relation on S ’ if

R ⊆ S × S

Such relations can be visualized as a directed graph:

Vertices: Elements of S

Edges: Elements of R

46

Example

S = {1, 2, 3}
R = {(1, 2), (2, 3), (3, 2)}

As a matrix: ◦ • ◦◦ ◦ •
◦ • ◦

47

Example

S = {1, 2, 3}
R = {(1, 2), (2, 3), (3, 2)}

As a graph:

2 3

1

48

Special (Trivial) Relations

(all w.r.t. set S)

Identity (diagonal, equality) E = { (x , x) : x ∈ S }
Empty ∅

Universal U = S × S

49

Important Properties of Binary Relations R ⊆ S × S

(R) reflexive (x , x) ∈ R ∀ x ∈ S
(AR) antireflexive (x , x) /∈ R ∀ x ∈ S

(S) symmetric (x , y) ∈ R → (y , x) ∈ R ∀ x , y ∈ S
(AS) antisymmetric (x , y), (y , x) ∈ R → x = y ∀ x , y ∈ S

(T) transitive (x , y), (y , z) ∈ R → (x , z) ∈ R ∀ x , y , z ∈ S

NB

An object, notion etc. is considered to satisfy a property if none of
its instances violates any defining statement of that property.

50

Examples

(R) reflexive (x , x) ∈ R for all x ∈ S
[• • ◦

◦ • ◦
• ◦ •

]
(AR) antireflexive (x , x) /∈ R

[◦ • •
◦ ◦ ◦
• ◦ ◦

]
(S) symmetric (x , y) ∈ R → (y , x) ∈ R

[• ◦ •
◦ ◦ •
• • ◦

]
(AS) antisymmetric (x , y), (y , x) ∈ R → x = y[• • ◦

◦ ◦ •
• ◦ ◦

]
(T) transitive (x , y), (y , z) ∈ R → (x , z) ∈ R[◦ ◦ •

• • •
◦ ◦ ◦

]

51

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

52

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

53

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

54

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

55

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

56

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

57

Common relations and their properties

(R) (AR) (S) (AS) (T)

= X X X X
≤ X X X
< X X X
∅ X X X X
U X X X
| X X X

58

Interaction of Properties

A relation can be both symmetric and antisymmetric. Namely,
when R consists only of some pairs (x , x), x ∈ S .
A relation cannot be simultaneously reflexive and antireflexive
(unless S = ∅).

NB

nonreflexive
nonsymmetric

}
is not the same as

{
antireflexive/irreflexive
antisymmetric

59

Equivalence Relations and Partitions

Relation R is called an equivalence relation if it satisfies
(R), (S), (T). Every equivalence R defines equivalence classes on
its domain S .
The equivalence class [s] (w.r.t. R) of an element s ∈ S is

[s] = { t ∈ S : tRs }

This notion is well defined only for R which is an equivalence
relation. Collection of all equivalence classes [S]R = { [s] : s ∈ S }
is a partition of S

S =
⋃
s∈S

[s]

60

Thus the equivalence classes are disjoint and jointly cover the
entire domain. It means that every element belongs to one (and
only one) equivalence class.
We call s1, s2, . . . representatives of (different) equivalence classes
For s, t ∈ S either [s] = [t], when sRt, or [s] ∩ [t] = ∅, when s 6Rt.
We commonly write s ∼R t when s, t are in the same equivalence
class.
In the opposite direction, a partition of a set defines the
equivalence relation on that set. If S = S1 ∪̇ . . . ∪̇ Sk , then we
specify s ∼ t exactly when s and t belong to the same Si .

61

Partial Order

A partial order � on S satisfies (R), (AS), (T).
We call (S ,�) a poset — partially ordered set

Every finite poset can be represented as a Hasse diagram, where
a line is drawn upward from x to y if x ≺ y and there is no z such
that x ≺ z ≺ y

Hasse diagram for positive divisors of 24

1

3

6

12

24

4

8

2

p � q if, and only if, p | q

62

Ordering Concepts

Minimal and maximal elements (they always exist in every
finite poset)

Minimum and maximum — unique minimal and maximal
element (might not exist)

lub (least upper bound) and glb (greatest lower bound) of a
subset A ⊆ S of elements
lub(A) — minimum of {x ∈ S s.t. x � a for all a ∈ A}
glb(A) — maximum of {x ∈ S s.t. x � a for all a ∈ A}

63

Examples

Pow({a, b, c}) with the order ⊆
∅ is minimum; {a, b, c} is maximum

Pow({a, b, c}) \ {{a, b, c}} (proper subsets of {a, b, c})
Each two-element subset {a, b}, {a, c}, {b, c} is maximal.

But there is no maximum

{1, 2, 3, 4, 6, 8, 12, 24} partially ordered by divisibility

e.g. lub({4, 6}) = 12; glb({4, 6}) = 2

{1, 2, 3} partially ordered by divisibility

{2, 3} has no lub

{2, 3, 6} partially ordered by divisibility

{2, 3} has no glb

{1, 2, 3, 12, 18, 36} partially ordered by divisibility

{2, 3} has no lub (12, 18 are minimal upper bounds)

64

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

65

Functions

A function, f : S → T , is a binary relation f ⊆ S × T such that
for all s ∈ S there is exactly one t ∈ T such that (s, t) ∈ f .

We write f (s) for the unique element related to s.

A partial function f : S 9 T is a binary relation f ⊆ S × T such
that for all s ∈ S there is at most one t ∈ T such that (s, t) ∈ f .
That is, it is a function f : S ′ −→ T for S ′ ⊆ S

66

Functions

f : S −→ T describes pairing of the sets: it means that f assigns
to every element s ∈ S a unique element t ∈ T . To emphasise
where a specific element is sent, we can write f : x 7→ y , which
means the same as f (x) = y

Symbol
S domain of f Dom(f) (inputs)
T co-domain of f Codom(f) (possible outputs)
f (S) image of f Im(f) (actual outputs)
= { f (x) : x ∈ Dom(f) }

67

Important!

The domain and co-domain are critical aspects of a function’s
definition.

f : N→ Z given by f (x) 7→ x2

and
g : N→ N given by g(x) 7→ x2

are different functions even though they have the same behaviour!

68

Composition of Functions

Composition of functions is described as

g ◦ f : x 7→ g(f (x)), requiring Im(f) ⊆ Dom(g)

Composition is associative

h ◦ (g ◦ f) = (h ◦ g) ◦ f , can write h ◦ g ◦ f

69

Composition of Functions

If a function maps a set into itself, i.e. when Dom(f) = Codom(f)
(and thus Im(f) ⊆ Dom(f)), the function can be composed with
itself — iterated

f ◦ f , f ◦ f ◦ f , . . . , also written f 2, f 3, . . .

Identity function on S

IdS(x) = x , x ∈ S ; Dom(i) = Codom(i) = Im(i) = S

For g : S −→ T g ◦ IdS = g , IdT ◦ g = g

70

Extension: Composition of Binary Relations

If R1 ⊆ S × T and R2 ⊆ T × U then the composition of R1 and
R2 is the relation:

R1;R2 := {(a, c) : there is a b ∈ T such that
(a, b) ∈ R1 and (b, c) ∈ R2}.

Note that if f : S → T and g : T → S are functions then
f ; g = g ◦ f .

71

Properties of Functions

Function is called surjective or onto if every element of the
codomain is mapped to by at least one x in the domain, i.e.

Im(f) = Codom(f)

Examples (of functions that are surjective)

f : N −→ N with f (x) 7→ x

Floor, ceiling

Examples (of functions that are not surjective)

f : N −→ N with f (x) 7→ x2

f : {a, . . . , z}∗ −→ {a, . . . , z}∗ with f (ω) 7→ aωe

72

Injective Functions

Function is called injective or 1–1 (one-to-one) if different x
implies different f (x), i.e.

f (x) = f (y)→ x = y

Examples (of functions that are injective)

f : N −→ N with f (x) 7→ x

set complement (for a fixed universe)

Examples (of functions that are not injective)

absolute value, floor, ceiling

length of a word

Function is bijective if it is both surjective and injective.

73

Converse of a function

Question

f← is a relation; when is it a function?

74

Question

f← is a relation; when is it a function?

Answer

When f is a bijection.

75

Inverse Functions

Inverse function — f −1 : T −→ S ;
for a given f : S −→ T exists exactly
when f is bijective.

Image of a subdomain A under a function

f (A) = { f (s) : s ∈ A } = { t ∈ T : t = f (s) for some s ∈ A }

Inverse image — f←(B) = { s ∈ S : f (s) ∈ B } ⊆ S ;
it is defined for every f (recall: converse of a relation)

If f −1 exists then f←(B) = f −1(B)

f (∅) = ∅, f←(∅) = ∅

76

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional Logic

77

Propositions

A sentence of a natural language (like English, Cantonese,
Warlpiri) is declarative, or a proposition, if it can be meaningfully
be said to be either true or false.

Examples

Richard Nixon was president of Ecuador.

A square root of 16 is 4.

Euclid’s program gets stuck in an infinite loop if you input 0.

Whatever list of numbers you give as input to this program, it
outputs the same list but in increasing order.

xn + yn = zn has no nontrivial integer solutions for n > 2.

3 divides 24.

K5 is planar.

78

The following are not declarative sentences:

Gubble gimble goo

For Pete’s sake, take out the garbage!

Did you watch MediaWatch last week?

Please waive the prerequisites for this subject for me.

x divides y . — R(x , y)

x = 3 and x divides 24. — P(x)

79

The following are not declarative sentences:

Gubble gimble goo

For Pete’s sake, take out the garbage!

Did you watch MediaWatch last week?

Please waive the prerequisites for this subject for me.

x divides y . — R(x , y)

x = 3 and x divides 24. — P(x)

80

Declarative sentences in natural languages can be compound
sentences, built out of other sentences.
Propositional Logic is a formal representation of some
constructions for which the truth value of the compound sentence
can be determined from the truth value of its components.

Chef is a bit of a Romeo and Kenny is always getting killed.

Either Bill is a liar or Hillary is innocent of Whitewater.

It is not the case that this program always halts.

81

Not all constructions of natural language are truth-functional:

Obama believes that Iran is developing nukes.

Chef said they killed Kenny.

This program always halts because it contains no loops.

The disk crashed after I saved my file.

NB

Various modal logics extend classical propositional logic to
represent, and reason about, these and other constructions.

82

The Three Basic Connectives of Propositional Logic

symbol text
∧ “and”, “but”, “;”, “:”
∨ “or”, “either . . . or . . . ”
¬ “not”, “it is not the case that”

Truth tables:

A B A ∧ B

F F F
F T F
T F F
T T T

A B A ∨ B

F F F
F T T
T F T
T T T

A ¬ A

F T
T F

83

Applications I: Program Logic

Example

if x > 0 or (x <= 0 and y > 100):

Let p
def
= (x > 0) and q

def
= (y > 100)

p ∨ (¬p ∧ q)

p q ¬p ¬p ∧ q p ∨ (¬p ∧ q)

F F T F F
F T T T T
T F F F T
T T F F T

This is equivalent to p ∨ q. Hence the code can be simplified to

if x > 0 or y > 100:

84

Somewhat more controversially, consider the following
constructions:

if A then B

A only if B

B if A

A implies B

it follows from A that B

whenever A, B

A is a sufficient condition for B

B is a necessary condition for A

Each has the property that if the whole statement is true, and A is
true, then B is true.

85

Vacuous truth

How to interpret A→ B when A is false?

A→ B If A (premise) then B (conclusion)

Material implication is false only when the premise holds and the
conclusion does not.

If the premise is false, the implication is true no matter how absurd
the conclusion is.

Both the following statements are true:

If February has 30 days then March has 31 days.

If February has 30 days then March has 42 days.

86

We can approximate the English meaning of A→ B by
“not (A and not B)” which has the following truth table:

A B A → B

F F T
F T T
T F F
T T T

While only an approximation to the English, 100+ years of
experience have shown this to be adequate for capturing
mathematical reasoning.
(Moral: mathematical reasoning does not need all the features of
English.)

87

Examples

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book.

(c) To get an HD in the course, you must get an HD on the exam.

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course.

88

Examples

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

89

Examples

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

90

Examples

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

91

Examples

p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

92

Unless

A unless B can be approximated as ¬B → A

E.g.
I go swimming unless it rains = If it is not raining then I go
swimming.
Correctness of the translation is perhaps easier to see in:
I don’t go swimming unless the sun shines = If the sun does not
shine then I don’t go swimming.

Note that “I go swimming unless it rains, but sometimes I swim
even though it is raining” makes sense, so the translation of “A
unless B” should not imply B → ¬A.

93

Just in case/if and only if

A just in case B usually means A if, and only if, B; written A↔ B

The program terminates just in case the input is a positive number.
= The program terminates if, and only if, the input is positive.

I will have an entree just in case I won’t have desert.
= If I have desert I will not have an entree and vice versa.

It has the following truth table:

A B A ↔ B

F F T
F T F
T F F
T T T

Same as (A→ B) ∧ (B → A)

94

A Propositional formula is made up of propositional variables
and logical connectives (∧,∨,¬,→,↔).

A truth assignment assigns T or F to each propositional variable,
and, using the logical connectives, gives a truth value to all
propsitional formulas.

95

Logical Equivalence

Two formulas φ, ψ are logically equivalent, denoted φ ≡ ψ if they
have the same truth value for all truth valuations.

Application: If φ and ψ are two formulae such that φ ≡ ψ, then
the digital circuits corresponding to φ and ψ compute the same
function. Thus, proving equivalence of formulas can be used to
optimise circuits.

96

Some Well-Known Equivalences

Excluded Middle p ∨ ¬p ≡ >
Contradiction p ∧ ¬p ≡ ⊥

Identity p ∨ ⊥ ≡ p
p ∧ > ≡ p
p ∨ > ≡ >
p ∧ ⊥ ≡ ⊥

Idempotence p ∨ p ≡ p
p ∧ p ≡ p

Double Negation ¬¬p ≡ p
Commutativity p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

97

Associativity (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Distribution p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

De Morgan’s laws ¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Implication p → q ≡ ¬p ∨ q
p ↔ q ≡ (p → q) ∧ (q → p)

98

Satisfiability of Formulas

A formula is satisfiable, if it evaluates to T for some assignment
of truth values to its basic propositions.

Example

A B ¬(A→ B)

F F F
F T F
T F T
T T F

99

Applications II: Constraint Satisfaction Problems

These are problems such as timetabling, activity planning, etc.
Many can be understood as showing that a formula is satisfiable.

Example

You are planning a party, but your friends are a bit touchy about
who will be there.

1 If John comes, he will get very hostile if Sarah is there.

2 Sarah will only come if Kim will be there also.

3 Kim says she will not come unless John does.

Who can you invite without making someone unhappy?

100

Translation to logic: let J, S ,K represent “John (Sarah, Kim)
comes to the party”. Then the constraints are:

1 J → ¬S
2 S → K

3 K → J

Thus, for a successful party to be possible, we want the formula
φ = (J → ¬S) ∧ (S → K) ∧ (K → J) to be satisfiable.
Truth values for J, S ,K making this true are called satisfying
assignments, or models.

101

We figure out where the conjuncts are false, below. (so blank = T)
J K S J → ¬S S → K K → J φ

F F F
F F T F F
F T F F F
F T T F F
T F F
T F T F F F
T T F
T T T F F

Conclusion: a party satisfying the constraints can be held. Invite
nobody, or invite John only, or invite Kim and John.

102

Exercise

2.7.14 (supp)

Which of the following formulae are always true?

(a) (p ∧ (p → q)) → q — always true

(b) ((p ∨ q) ∧ ¬p) → ¬q — not always true

(e) ((p → q) ∨ (q → r)) → (p → r) — not always true

(f) (p ∧ q)→ q — always true

103

Exercise

2.7.14 (supp)

Which of the following formulae are always true?

(a) (p ∧ (p → q)) → q — always true

(b) ((p ∨ q) ∧ ¬p) → ¬q — not always true

(e) ((p → q) ∨ (q → r)) → (p → r) — not always true

(f) (p ∧ q)→ q — always true

104

Validity, Entailment, Arguments

An argument consists of a set of declarative sentences called
premises and a declarative sentence called the conclusion.

Example

Premises: Frank took the Ford or the Toyota.
If Frank took the Ford he will be late.
Frank is not late.

Conclusion: Frank took the Toyota

105

An argument is valid if the conclusions are true whenever all the
premises are true. Thus: if we believe the premises, we should also
believe the conclusion.
(Note: we don’t care what happens when one of the premises is
false.)
Other ways of saying the same thing:

The conclusion logically follows from the premises.

The conclusion is a logical consequence of the premises.

The premises entail the conclusion.

106

The argument above is valid. The following is invalid:

Example

Premises: Frank took the Ford or the Toyota.
If Frank took the Ford he will be late.
Frank is late.

Conclusion: Frank took the Ford.

107

For arguments in propositional logic, we can capture validity as
follows:
Let φ1, . . . , φn and φ be formulae of propositional logic. Draw a
truth table with columns for each of φ1, . . . , φn and φ.
The argument with premises φ1, . . . , φn and conclusion φ is valid,
denoted

φ1, . . . , φn |= φ

if in every row of the truth table where φ1, . . . , φn are all true, φ is
true also.

108

We mark only true locations (blank = F)
Frd Tyta Late Frd ∨ Tyta Frd → Late ¬Late Tyta

F F F T T
F F T T
F T F T T T T
F T T T T T
T F F T T
T F T T T
T T F T T T
T T T T T T

This shows Frd ∨ Tyta, Frd → Late, ¬Late |= Tyta

109

The following row shows Frd ∨ Tyta, Frd → Late, Late 6|= Frd
Frd Tyta Late Frd ∨ Tyta Frd → Late Late Frd

F T T T T T F

110

Applications III:
Reasoning About Requirements/Specifications

Suppose a set of English language requirements R for a
software/hardware system can be formalised by a set of formulae
{φ1, . . . φn}.
Suppose C is a statement formalised by a formula ψ. Then

1 The requirements cannot be implemented if φ1 ∧ . . . ∧ φn is
not satisfiable.

2 If φ1, . . . φn |= ψ then every correct implementation of the
requirements R will be such that C is always true in the
resulting system.

3 If φ1, . . . φn−1 |= φn, then the condition φn of the specification
is redundant and need not be stated in the specification.

111

Example

Requirements R: A burglar alarm system for a house is to operate
as follows. The alarm should not sound unless the system has been
armed or there is a fire. If the system has been armed and a door
is disturbed, the alarm should ring. Irrespective of whether the
system has been armed, the alarm should go off when there is a
fire.
Conclusion C : If the alarm is ringing and there is no fire, then the
system must have been armed.
Questions

1 Will every system correctly implementing requirements R
satisfy C?

2 Is the final sentence of the requirements redundant?

112

Expressing the requirements as formulas of propositional logic,
with

S = the alarm sounds = the alarm rings

A = the system is armed

D = a door is disturbed

F = there is a fire

we get
Requirements:

1 S → (A ∨ F)

2 (A ∧ D)→ S

3 F → S

Conclusion: (S ∧ ¬F)→ A

113

Our two questions then correspond to

1 Does S → (A∨F), (A∧D)→ S , F → S |= (S ∧¬F)→ A ?

2 Does S → (A ∨ F), (A ∧ D)→ S |= F → S ?

114

Validity of Formulas

A formula φ is valid, or a tautology, denoted |= φ, if it evaluates
to T for all assignments of truth values to its basic propositions.

Example

A B (A→ B)→ (¬B → ¬A)

F F T
F T T
T F T
T T T

115

Validity, Equivalence and Entailment

Theorem

The following are equivalent:

φ1, . . . φn |= ψ

|= (φ1 ∧ . . . ∧ φn)→ ψ

|= φ1 → (φ2 → . . . (φn → ψ) . . .)

Theorem

φ ≡ ψ if and only if |= φ↔ ψ

116

Deeper reasoning

Entailment captures a form of logical reasoning, but it cannot
handle relatively simple logical arguments like the following:

1 Socrates is a man

2 All men is mortal

3 Therefore Socrates is mortal

We need to add expressiveness to propositional logic so that we
can capture notions such as the relation between man and men in
the first two statements; and the quantified statement “all men”.

NB

Adding expressiveness comes at a cost: it is now more difficult to
determine truth values.

117

Predicates

Predicates are functions that take inputs from a set of individuals
and return either true or false – i.e. they are relations between the
individuals. Predicates enable us to establish relationships between
different propositions, such as the man/men connection between
the first and second propositions on the previous slide, allowing
deeper reasoning than propositional logic can give.

118

Quantifiers
Quantifiers allow us to make quantified statements over predicates,
e.g.

“If there exists a satisfying assignment . . . ”

or

“Every natural number greater than 2 . . . ”

The two standard quantifiers are

∀: “for all”, “for any”, “every”

∃: “there exists”, “there is”, “for some”, “at least one”

Example

Goldbach’s conjecture

∀n ∈ 2N (n > 2→ ∃p, q ∈ N (p, q ∈ Primes ∧ n = p + q))

119

Predicate logic

Predicate (or first-order) logic extends propositional logic by
adding predicates and quantifiers.
Propositional logic is about reasoning with propositions:
statements that are either true or false. Predicate logic extends
propositional logic by examining why propositions might be true or
false.

120

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional (and Predicate) Logic

What is assessible?

Everything. However...

121

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional (and Predicate) Logic

What is assessible?

Everything. However...

122

Summary of topics

Sets

Formal languages

Relations

Functions

Propositional (and Predicate) Logic

What is assessible?

Everything. However...

123

