
COMP3421/9415 
Computer Graphics

Further geometry & Transformations


Robert Clifton-Everest


Email: robertce@cse.unsw.edu.au

mailto:robertce@cse.unsw.edu.au


Recap

•We know how to use OpenGL to draw points and 
lines


-OpenGL API


-Manual memory management


• Lab task available for practice


-Help session at 3-4PM on Thursday and 2-3PM 
on Friday. In the Piano lab (K14 underground)



Line strips

• A line strip is a series of points joined by lines


• They can be drawn with GL_LINE_STRIP


• See LineStrip2D.java



Mouse Input events

• We can add mouse event listeners to handle 
input.


- http://jogamp.org/deployment/v2.3.2/javadoc/jogl/
javadoc/com/jogamp/newt/event/MouseListener.html


• Adaptors let us only handle the events we care about.


- http://jogamp.org/deployment/v2.3.2/javadoc/jogl/
javadoc/com/jogamp/newt/event/MouseAdapter.html


• See LineDrawing.java

http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseListener.html
http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseListener.html
http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseAdapter.html
http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseAdapter.html


Mouse Events

• When we click on the screen we get the mouse 
co-ordinates in screen co-ordinates. 


• We need to somehow map them back to 
viewport co-ordinates.



Mouse Events

(0,0)

(1,-1)(-1,-1)

(-1,1) (1,1)

(?,?)



Triangles

• We can draw triangles with GL_TRIANGLES


• See Triangle2D.java and TriangleDrawing.java



Polygons

• Shapes with an arbitrary number of sides


• Whether or not we can easily draw them depends on a 
few factors



Polygons

Simple, Convex

Simple, 
Concave

Not simple



Tessellation

• We can draw polygons by splitting them up into simpler 
shapes (typically triangles)

Simple, Convex

Simple, 
Concave

Not simple



Triangle Fans

• One simple method is to use a triangle fan.


• Start with any vertex of the polygon and move 
clockwise or counter-clockwise around it.


• The first three points form a triangle. Any new points 
after that form a triangle with the last point and the 
starting point.



Triangle Fans

1

6

5 4

3

2



Triangle Fans

• Works for all simple convex polygons, and some 
concave ones


• Can be drawn with GL_TRIANGLE_FAN


• The lab task



Transformations

•One of the fundamental concepts we will cover 
in this course

•This week and next week we will be focusing on 
2D transformations.



Back to the fish

•So we can draw a 
fish?

•What if we wanted to 
draw one that was 
somewhere else


-… or smaller

-… or swimming 
upwards



Back to the fish

•What if we wanted to 
draw a scene like 
this?



Translation

•Translation is the process of moving an object in 
space



Rotation

•Rotate objects around the origin



Scaling

•Scale along both axes.



Scaling

•Or scale across only one axis



Composition

•We can compose these 
transforms to arrange a fish 
however we want e.g.



Composition

•We can compose these 
transforms to arrange a fish 
however we want e.g.


-Translate



Composition

•We can compose these 
transforms to arrange a fish 
however we want e.g.


-Translate

-Rotate



Composition

•We can compose these 
transforms to arrange a fish 
however we want e.g.


-Translate

-Rotate

-Scale



Composition

•We can compose these 
transforms to arrange a fish 
however we want e.g.


-Translate

-Rotate

-Scale



Transformations

•We can think of transformations in two ways


1. Extrinsic: An object being transformed or 
altered within a fixed co-ordinate system.


2. Intrinsic: The co-ordinate system of the object 
being transformed. This is generally the way 
we will think of it.



Intrinsic transformations

•We transform the 
coordinate system the fish 
is in. e.g.



Intrinsic transformations

•We transform the 
coordinate system the fish 
is in. e.g.



Intrinsic transformations

•We transform the 
coordinate system the fish 
is in. e.g.


-Translate



Intrinsic transformations

•We transform the 
coordinate system the fish 
is in. e.g.


-Translate

-Rotate



Intrinsic transformations

•We transform the 
coordinate system the fish 
is in. e.g.


-Translate

-Rotate

-Scale



Intrinsic transformations

•We transform the 
coordinate system the fish 
is in. e.g.


-Translate

-Rotate

-Scale

-Draw fish



Model transformation

•A model transformation describes how a local 
coordinate system maps to the world 
coordinate system.


•Each object in a scene has its own local 
coordinate system.



Coordinate frames

•We define a coordinate system by a coordinate 
frame.


• It defines the origin and the direction and scale 
of the x and y-axes.



Coordinate frames

•A helpful analogy is to think of a coordinate 
frame as a more general form of cursor.


-Mouse cursors can only be translated

-Coordinate frames can also be rotated and 
scaled (and more).



Identity frame

•The coordinate frame with:


-an origin at (0,0)

-y-axis vertical and of length 1

-x-axis horizontal and of length 1


•… is referred to as the identity frame



Coordinate Frames in UNSWgraph

•The CoordFrame2D class represents a 
coordinate frame in 2D.


-Constructed via the static method 
CoordFrame2D.identity()


-Has methods for generating transformed 
coordinate frames.


-See TransformingFish.java.



Transformations

•We can apply different transformations to the coordinate 
frame:


-translate(float x, float y)

-rotate(float degrees)

-scale(float x, float y) 
•Giving the frame as an argument to the draw methods will 
draw them in the coordinate system represented by the 
frame. e.g.


-line.draw(gl,frame)



translate(x,y)

•Translate the coordinate space by the specified 
amount along each axis. 

• In this case the origin of the co-ordinate frame 
moves.



rotate(degrees)

•Rotate the coordinate space by the specified 
angle. 

•Notice, the origin of the co-ordinate frame 
doesn't move



rotate(degrees)

•Angles are in degrees.


•Positive rotations are rotating x towards y.


•Negative rotations are rotating y towards x.  



scale(x, y)

•Scale the coordinate space by the specified 
amounts in the x, y directions.		  

•Notice again, the origin of the co-ordinate 
doesn't move.



scale(x, y)

•Negative scales create reflections.


•e.g. scale(-1,0)


•Flip horizontally



scale(x, y)

•or scale(0,-1)


•Flip vertically



Exercise

•What transformation/s would give us this result?



Solution

•scale(-1,-1)

•or rotate(180) 


•or rotate(-180)



Rotation

• If the object is not located at the origin, it might not 
do what you expect when its co-ordinate frame is 
rotated.


•The origin of the co-ordinate frame is the pivot point.



Rotation

• If the object is not located at the origin, the 
object will move further from the origin if its co-
ordinated frame is scaled


•Only points at the origin remain unchanged.



Exercise

•Draw the co-ordinate frame after each 
successive transformation. 
 
CoordFrame2D.identity()  
    .translate(-1, 0.5)  
    .rotate(90)  
    .scale(1, 2)



Order matters

•Note that the order of transformations matters. 


• translate then rotate != rotate then translate


• translate then scale != scale then translate


• rotate then scale != scale then rotate



Non-uniform Scaling then Rotating

• If we scale by different amounts in the x 
direction to the y direction and then rotate, we 
get unexpected and often unwanted results. 
Angles are not preserved.



Rotating about an arbitrary point.

•So far all rotations have been about the origin. To rotate 
about an arbitrary point.


1.Translate to the point


-translate(0.5,0.5) 

2.Rotate


-rotate(45) 

3.Translate back again


-translate(-0.5,-0.5)



Storing history

•Often we want to store the current 
transformation/coordinate frame, transform it 
and then restore the old frame again.


•The CoordFrame2D class is immutable, so we 
can store intermediate frames

CoordFrame2D fishFrame0 = CoordFrame2D.identity().scale(0.5f, 0.5f);
CoordFrame2D fishFrame1 = fishFrame0.translate(1, -1);
CoordFrame2D fishFrame2 = fishFrame0.translate(-1, 1);



Source: mathwithbaddrawings.com

http://mathwithbaddrawings.com


Vector and Matrix Revision

•To represent coordinate frames and easily 
convert points in one frame to another we use 
vectors and matrices.


•Some revision first.



Vectors

•Having the right vector tools greatly simplifies 
geometric reasoning.


•A vector is a displacement.


•We represent it as a  
tuple of values in a particular coordinate 
system.

A

B

v(1,1)
(3,1)

(4,2)



Points vs Vectors

•Vectors have 


- length and direction

-no position


•Points have


-position

-no length, no direction



Points and Vectors

•The sum of a point and a vector is a point. 
 
P + v = Q

Q

P

v



Points and Vectors

•The sum of a point and a vector is a point. 
 
P + v = Q


•Which is the same as saying 


-The difference between two points is a vector: 
 
v = Q – P



Adding vectors

•By adding components:



Subtracting vectors

•By subtracting components:



Magnitude

•Magnitude (i.e. length)


•Normalisation(i.e. direction):


•Warning: You can’t normalize the zero vector



Exercises

1. What is the vector v from P to Q if  
P = (4,0), Q = (1,3) ?


2. Find the magnitude of the vector (1,2)


3. Normalise the vector (8,6)



Dot product

Definition:


Example: 


Properties: 

(1,2)·(−1,3) = 1 × (−1) + 2 × 3 = 5



Angle between vectors



Normals in 2D

If two vectors are perpendicular, their dot product is 0. 


If                  is a normal to 


   


   


   So, unless one is the 0 vector, either 


                    or 

n = (xn, yn)

p = (x, y)

p·n = xnx + yny = 0

n = (y, − x)n = (−y, x)



Cross product

•Only defined for 3D vectors:


•Properties:


•Can use to find normals (more on this in later weeks)

a
b

a × b



AxB vs BxA

•Assuming a right handed co-ordinate system: to 
find the direction of AxB curl fingers of your 
right hand from A to B and your thumb shows 
the direction. BxA would be in the opposite 
direction.



Determinant form

•For this who know, the cross product can be 
defined as a determinant of a matrix.


• It is not necessary to understand determinants in 
this course

a × b =
i j k
a 1̀a2a3
b1 b2 b3



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2b3⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2b3 − a3b2⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2b3 − a3b2
a3b1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2b3 − a3b2
a3b1 − a1b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2b3 − a3b2
a3b1 − a1b3
a1b2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Memory Aid

a1
a2
a3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×

b1
b2
b3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



Cross product

•The magnitude of the cross product is the area 
of the parallelogram formed by the vectors:

a

b

|a × b|



Exercises

1. Find the angle between vectors (1,1) and 
(-1,-1)


2. Is vector (3,4) perpendicular to (2,1)?


3. Find a vector perpendicular to vector a where 
a = (2,1) 


4. Find a vector perpendicular to vectors a and 
b where a = (3,0,2) b = (4,1,8)



Matrices



Matrix multiplication

=



Matrix multiplication

=

1 × 2 + 0 × 0 + 3 × 1 = 5



Matrix multiplication

=



Matrix multiplication

=



Matrix multiplication

=



Matrix multiplication

=



Matrix multiplication

=



Matrix multiplication

=



Matrix multiplication

=

And so on…



Matrix multiplication

=



Homework

•Revise basics of vectors and matrix 
multiplication if you need to as we will use them 
extensively from next week on.


