
1

COMP2121: Microprocessors and
Interfacing

Instruction Set Architecture (ISA)

http://www.cse.unsw.edu.au/~cs2121

Lecturer: Hui Wu

Term 2, 2019

2

Contents

• Memory models

• Registers

• Data types

• Instructions

1

2

2

3

Instruction Set Architecture (ISA)
• ISA is the interface between hardware and software

• For (machine language) programmers (and compiler writers)

• Don’t need to know (much) about microarchitecture

• Just write or generate instructions that match the ISA

• For hardware (microarchitecture) designers

• Don’t need to know about the high level software

• Just build a microarchitecture that implements the ISA

Software

Hardware

Hardware

C program

ISA level

ISA program executed
by hardware

FORTRAN 90
program

FORTRAN 90
program compiled
to ISA program

C program
compiled
to ISA program

4

What makes an ISA?

• Memory models

• Registers

• Data types

• Instructions

3

4

3

5

What makes an ISA?
#1: Memory Models

• Memory model: how does memory
look to CPU?

• Issues

1. Addressable cell size

2. Alignment

3. Address spaces

4. Endianness

6

Addressable Cell Size

• Memory has cells, each of which has an address

• Most common cell size is 8 bits (1 byte)

 AVR data memory has 8 bit cells

• But not always!

 AVR program memory has 16 bit cells (2 bytes)

• Note – the data bus may be wider

 i.e. retrieve several cells (addresses) at once

5

6

4

7

Alignment (1/2)

• Many architectures require natural alignment,
e.g.
– 4-byte words starting at addresses 0,4,8, …

– 8-byte words starting at addresses 0, 8, 16, …

8

Alignment (2/2)

• Alignment often required because it is more efficient
• Example – Pentium II

– Fetches 8 bytes at a time from memory (8-byte wide
data bus)

– Addresses have 36 bits, but address bus only has 33 bits
– But, alignment is NOT required (for backwards

compatibility reasons)
• 4-byte word stored at address 6 is OK
• Must read bytes 0 to 7 (one read) and bytes 8 to 15 (second

read) then extract the 4 required bytes from the 16 bytes read

7

8

5

9

Address Spaces

• Princeton architecture or Von Neumann
architecture (most used).
– A single linear address space for both instructions

and data
– e.g. 232 bytes numbered from 0 to 232 -1

» (may not be bytes – depends on addressable cell size)

• Harvard architecture
– Separate address spaces for instructions and data
– AVR AT90S8515

• Data address space: up to 216 bytes
• Instruction address space: 212 16-bit words

AVR Address Spaces (1/3)

• AVR microcontrollers have three address spaces
 Program memory

 Stores instructions and constants

 Data memory
 Stores data (variables)

 Data EEPROM memory
 Stores system parameters

10

9

10

6

11

AVR Address Spaces (1/2)

16 Bits

32 general purpose
registers

0x0000

0x1F

64 input/output
registers

Internal SRAM
(128~4K bytes)

External SRAM

0x20

0x5F

End Address

0x0000

End Address

Program Memory
Data Memory

0x60

8 bits

Program flash memory

(1K bytes~128K bytes)

12

AVR Address Spaces (2/2)

8 bits

0x0000

End address

Data EEPROM Memory

EEPROM memory
(64~4K bytes)

11

12

7

13

Endianness

• Different machines may support different byte
orderings

• Two orderings:
– Little endian – little end (least significant byte) stored first

(at lowest address)
• Intel microprocessors (Pentium etc)
• AVR microcontrollers for program memory

– Big endian – big end stored first
• SPARC, Motorola microprocessors

• Most CPUs produced since 1992 are
“bi-endian” (support both)
– some switchable at boot time
– others at run time (i.e. can change dynamically)

14

What makes an ISA?
#2: Registers (1/2)

• Two types
– General purpose

• Used for temporary results etc

– Special purpose, e.g.
• Program Counter (PC)

• Stack pointer (SP)

• Input/Output Registers

• Status Register

13

14

8

15

Registers (2/2)

• Some other registers are part of the microarchitecture
NOT the ISA

• Instruction Register (IR)

• Memory Address Register (MAR)

• Memory Data Register (MDR)

– i.e. programmer doesn’t need to know about these
(and can’t directly change or use them)

16

AVR Registers

• General purpose registers are quite regular
– Exception: a few instructions work on only the upper half (registers

16-31)
• Bit limitations in some instructions (e.g. only 4 bits to specify which

register)

• There are many I/O registers
– Not to be confused with general purpose registers

– Some instructions work with these, others with general purpose
registers – don’t confuse them

• When X is needed as an index register, R26 and R27 are not
available as general registers.

• In AVR devices without SRAM, the registers are also the only
memory – can be tricky to manage

15

16

9

17

General-Purpose Registers in AVR (1/2)

• 32 general-purpose registers
 named r0, r1, …, r31 in AVR assembly language
 Broken into two parts: with 16 registers each, r0 to r15 and r16 to

r31.
 Each register is also assigned a memory address in SRAM space.
 Register r0 and r26 through r31 have additional functions.

o r0 is used in the instruction LPM (load program memory)
o Registers x (r27 : r26), y (r29 : r28) and z (r31 : r30) are used as pointer

registers

• Most instructions that operate on the registers have direct,
single cycle access to all general registers. Some
instructions such as sbci, subi, cpi, andi, ori and ldi operates
only on a subset of registers.

General-Purpose Registers in AVR (2/2)

Address

0x00

0x01

0x1A

0x1B

0x1C

0x1D

0x1E

0x1F

r0

r1

r26

r27

r28

r29

r30

r31

xl (x register low byte)

xh (x register high byte)

yl (y register low byte)

yh (y register high byte)

zl (z register low byte)

zh (z register high byte)

18

17

18

10

Status Register in AVR (1/7)

• The Status Register (SREG) contains information about the result of the
most recently executed arithmetic/logic instruction. This information can
be used for altering program flow in order to perform conditional
operations.

• SREG is updated after all ALU operations.

• SREG is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by
software.

Status Register in AVR (2/7)

• Bit 7 – I: Global Interrupt Enable

 Used to enable and disable interrupts.

1: enabled. 0: disabled.

 The I-bit is cleared by hardware after an interrupt has occurred, and
is set by the RETI instruction to enable subsequent interrupts.

I T H S V N Z C
Bit 7 6 5 4 3 2 1 0

19

20

11

21

Status Register in AVR (3/7)

• Bit 6 – T: Bit Copy Storage

 The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore)
use the T-bit as source or destination for the operated bit. A bit from a

register in the Register File can be copied into T by the BST
instruction, and a bit in T can be copied into a bit in a register in the

Register File by the BLD instruction.

I T H S V N Z C
Bit 7 6 5 4 3 2 1 0

22

Status Register in AVR (4/7)

• Bit 5 – H: Half Carry Flag

 The Half Carry Flag H indicates a Half Carry (carry from bit 4) in
some arithmetic operations.

 Half Carry is useful in BCD arithmetic.

I T H S V N Z C
Bit 7 6 5 4 3 2 1 0

21

22

12

Status Register in AVR (5/7)

• Bit 4 – S: Sign Bit

 Exclusive OR between the Negative Flag N and the Two’s
Complement Overflow Flag V (S = N V).

• Bit 3 – V: Two’s Complement Overflow Flag

 The Two’s Complement Overflow Flag V supports two’s
complement arithmetic.

I T H S V N Z C
Bit 7 6 5 4 3 2 1 0

Status Register in AVR (6/7)

• Bit 2 – N: Negative Flag

 N is the most significant bit of the result.

• Bit 1 – Z: Zero Flag

 Z indicates a zero result in an arithmetic or logic operation. 1: zero.
0: Non-zero.

I T H S V N Z C
Bit 7 6 5 4 3 2 1 0

23

24

13

25

Status Register in AVR (7/7)

• Bit 0 – C: Carry Flag

 Its meaning depends on the operation.

For addition X+Y, it is the carry from the most significant bit. In
other words, C= Rd7 • Rr7 +Rr7 • NOT(R7) + NOT(R7) • Rd7, where
Rd7 is the bit 7 of x, Rr7 is the bit 7 of y, R7 is the bit 7 of x+y, • is the
logical AND operation, and + is the logical OR operation.

For subtraction x-y, where x and y are unsigned integers, it indicates
if x<y. If x<y, then C=1; otherwise, C=0. In other words, C = NOT(Rd7) •
Rr7+ Rr7 • R7 +R7 • NOT(Rd7).

I T H S V N Z C
Bit 7 6 5 4 3 2 1 0

26

What makes an ISA?
#3: Data Types (1/3)

• Numeric
– Integers of different lengths (8, 16, 32, 64 bits)

• Possibly signed or unsigned
– Floating point numbers, e.g. 32 bits (single precision) or 64 bits

(double precision)
– Some machines support BCD (binary coded decimal) numbers

• Non-numeric
– Boolean (0 means false, 1 means true) – stored in a whole byte or

word
– Bit-map (collection of booleans, e.g. 8 in a byte)
– Characters
– Pointers (memory addresses)

25

26

14

27

Data types (2/3)

• Different machines support different data types in
hardware
– e.g. Pentium II:

– e.g. Atmel AVR:

Data Type 8 bits 16 bits 32 bits 64 bits 128 bits
Signed integer
Unsigned integer
BCD integer

Floating point

Data Type 8 bits 16 bits 32 bits 64 bits 128 bits
Signed integer
Unsigned integer
BCD integer
Floating point

28

Data types (3/3)

• Other data types can be supported in software
– e.g. 16-bit integer operations can be built out of 8-bit

operations

– Floating point operations can be built out of logical and
integer arithmetic operations

27

28

15

29

What makes an ISA?
#4: Instructions

• This is the main feature of an ISA

• Instructions include
– Load/Store – move data from/to memory

– Move – move data between registers

– Arithmetic – addition, subtraction

– Logical – Boolean operations

– Branching – for deciding which instruction to perform
next

– I/O instructions – for controlling I/O devices

30

Summary:
What makes an ISA?

• Memory models

• Registers

• Data types

• Instructions

• If you know all these details, you can
– Write machine code that runs on the CPU

– Build the CPU

29

30

16

31

CISC vs. RISC (1/2)

• How complex should the instruction set be? Should you do everything
in hardware?

• 2 “styles” of ISA design
• CISC = Complex Instruction Set Computer

– Lots of complex instructions – many of which take many clock cycles to
execute

– Examples: 8086 to 80386
– Classic example: VAX had a single instruction to evaluate a polynomial

equation
• RISC = Reduced Instruction Set Computer

– Fewer, simpler instructions which can execute quickly (often one clock
cycle)

– Lots of registers
– More complex operations built out of simpler instructions
– Examples: SPARC, MIPS, PowerPC

32

CISC vs. RISC (2/2))

• Originally (80s)
– CISC – 200+ instructions
– RISC – ~50 instructions

• Today
– Number of instructions irrelevant
– Many “CISC” processors use RISC techniques

• e.g. 80486 … Pentium IV
– Better to look at use of registers/memory

• CISC – often few registers, many instructions can access memory
• RISC – many registers, only load/store instructions access memory

• Atmel AVR is a RISC microcontroller

31

32

17

33

Reading Material

1. Chapter 2, Microcontrollers and Microcomputers by
Fredrick M. Cady.

33

