
1

Basics of digital systems

Notes by Annie Guo

Overview

• Basics of computing with digital systems
– Hardware fundamentals

• Logic gates

• Functional blocks

• Processor structures

1

2

2

Logic gates

• Virtually all problems can be solved by digital
circuits and systems

• The basic elements of digital circuits are logic
gates

• Logic gates
– ideally have signals of two levels: high and low
– perform logic functions, such as NOT, AND, OR,

NAND, NOR

• Logic gates can be represented by symbols
and their functions can be described using
truth tables.

NOT, AND & OR gates

– NOT

– AND

– OR

X Z = X

Symbol Truth Table

X
Y

Z = X•Y

X
Y Z = X+Y

X Z

0 1

1 0

X Y X•Y

0 0 0

0 1 0

1 0 0

1 1 1

X Y X+Y

0 0 0

0 1 1

1 0 1

1 1 1

X Z

low high

high low

X Y X•Y

low low low

low high low

high low low

high high high

X Y X+Y

low low low

low high high

high low high

high high high

3

4

3

NAND & NOR gates

– NAND

– NOR

Symbol Truth Table

X
Y

Z = X•Y
X Y X•Y

0 0 1

0 1 1

1 0 1

1 1 0

X Y X+Y

0 0 1

0 1 0

1 0 0

1 1 0

X
Y Z = X+Y

XOR & XNOR gates

– XOR

– XNOR

Symbol Truth Table

X
Y

Z = XY X Y XY

0 0 0

0 1 1

1 0 1

1 1 0

X Y XY

0 0 1

0 1 0

1 0 0

1 1 1

X
Y Z = XY

5

6

4

Functional blocks

• With basic logic gates we can build up
different functional blocks such as
– Adders

– Multiplexers

– Decoders

– Latches

– Registers

– Counters

Adders (1/3)

• One bit adder
– Truth table
– Logic function

Sum: S = A xor B
Carry: C = AB

– Digital circuit

– Symbol

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

S

C

A
B

1-bit
adder

A
B

S
C

7

8

5

Adders (2/3)

• One bit adder with carry
– Called Full Adder

– Symbol

– Function
• Adding three 1-bit numbers

Full
adder

A
B
Cin

S
Cout

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Adders (3/3)

• n-bit adder
– Symbol

– Function
• Adding two n-bit numbers

– The result is n-bit sum and 1-bit carry

n-bit
adder

A
B

S
C

n

n

n

9

10

6

Multiplexer

• Function:
– A multiplexer selects one input among multiple

inputs and passes it to output.
• The selection is controlled by control signal Sn-1 ~S0

• The symbol:

D0

D1

Dm-1

Sn-1 S0

Y
m:1
mux

…

OR mux

Example

• 4:1 multiplexer

• Function:

When S1S0 = 00, Y=D0
When S1S0 = 01, Y=D1
When S1S0 = 10, Y=D2
When S1S0 = 11, Y=D3

D0

D1

D2

D3

S1 S0

Y
4:1
mux

11

12

7

MUX example in AVR

Decoder

• Function:
– A decoder converses an n-bit input code to an m-

bit output code
• n  m  2n

• each valid input code word produces a unique output
code

– Typical n-to-2n decoder
• One line of outputs represents a specified input

combination

– The symbol:

A0

A1

An-1

n-to-2n

decoder

B0
B1

B2n-1

13

14

8

Example

• 3-to-8 register file address decoder

• Function: Address Output
A2 A1 A0 B0 B1 B2 B3 B4 B5 B6 B7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

A0

A1

A2

3-to-8
decoder

B0
B1

B7

Multi-operation unit

• Perform 1-bit logic operations:
– AND, OR, XOR, NOT

Constructed with functional components

15

16

9

ALU

• Perform arithmetic and logic operations
– such as addition, subtraction, logic AND, Logic OR

• Symbol:
– A, B are operands, S selects one of operations in

ALU

A

B
ALU R

S

OR
ALU

Example

Operation selection Operation
S2 S1 S0

0 0 0 Addition
0 0 1 Subtraction
0 1 0 AND
0 1 1 OR
1 0 0 XOR
1 0 1 NOT
1 1 0 Increment

1 1 1 Transfer

17

18

10

ALU example in AVR

Latches and Flip Flops (1/3)

• A latch can store one bit information.

• Can be constructed in many ways.

• 2-NAND gate latch
• R=0, reset the latch

• S=0, set latch

• S = R = 1, store the data

R

S Q

Q

19

20

11

Latches and Flip Flops (2/3)

• Clocked latch uses clock to control the latch
operation
– When Clk=1,

• S=1, set the latch

• S=1, reset the latch

• S=R=0, store data

– When Clk=0,
• Data is retained

S

R

Q

Q

Clk

Latches and Flip Flops (3/3)

• Flip Flops use clock edges to trigger the data-
store operation.
– A very commonly used Flip Flop is D FF

• On the rising edge of clock, the input data D is locked
into the D flip flop

– Timing diagram

clk

D Q

Q

D Q(n+1)

0 0
1 1

cp

D

Q

21

22

12

Registers (1/3)

• A register is a collection of latches/FFs
– storing a vector of bit values

• symbol

PC

15 8 7 0

R(H) R(L)

Registers (2/3)

• 4-bit Parallel In Parallel Out (PIPO) registers.

D Q

CP

I3 Q3

D QI2 Q2

D QI1 Q1

D QI0 Q0

The 4-bit input I3I2I1I0 is
“loaded” (copied to the
output Q3Q2Q1Q0 of the D
FFs) on the rising clock
edge, and that output is
held until the next clock
edge.

23

24

13

Registers (3/3)

• 4-bit Serial In Parallel Out (PISO) registers.

On the clock edge, the output of each flip-
flop is passed to the next flip-flop in the
chain. The input signal is fed serially (one bit
at a time) into the first flip-flop. The flip-flop
outputs are available in parallel

Clk

D Q

Q0

D Q

Q1

D Q

Q2

D Q

Q3

Input

Counters (1/2)

• A counter increases/decrease its value every
clock cycle.

25

26

14

Counters (2/2)

• 4-bit counter

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Clock

0

0

0

0

Reset

• with a synchronous load

• an asynchronous clear

• counts through 0, 1, 2, …, 15, 0

Digital systems

• A digital system generally includes two parts:
– Datapath

• Performing a variety of operations on data from different
sources

– Control unit
• Controlling the selection of the operation and data

27

28

15

CPU

K. Meno, “Logic and Computer Design Fundamentals”

Example of datapath operations

K. Meno, “Logic and Computer Design Fundamentals”

29

30

16

Control unit

• Control signals determine the operation of the
datapath

• Where do the control signals come from?
– from control unit

• Control unit takes the instruction from
instruction memory, together with the status
values from datapath, to generate the control
signals

Some practical designs

• Tri-state buffer
– Has three output states

• High level signal (1) passed from the input

• Low level signal (0) passed from the input

• High impedance (Hi-Z)
– Disconnecting the input devices to the output devices

– Allows multiple logic gates to drive the same
output (e.g, bus)

IN

EN

OUT

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1

31

32

17

Some practical designs

• Open collector
– Act like one-way switch

• When it is “Open”, no controlling operations

Example

Pullup resistor

Chip 1

Chip 2

Micro

INT/

Open collector
interrupt output
that asserts low

Another open
collector
interrupt output
that asserts low

Microprocessor
interrupt input
that asserts low

33

34

18

For comprehensive coverage of digital systems
design, please take COMP3222
– Digital Circuits and Systems

– Offered in S2 each year

Reading material

• Appendix B in Computer Organization and
Design, The hardware/software interface.

35

36

