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Basics of digital systems

Notes by Annie Guo

Overview

• Basics of computing with digital systems
– Hardware fundamentals

• Logic gates

• Functional blocks

• Processor structures
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Logic gates

• Virtually all problems can be solved by digital 
circuits and systems

• The basic elements of digital circuits are logic 
gates

• Logic gates 
– ideally have signals of two levels: high and low
– perform logic functions, such as NOT, AND, OR, 

NAND, NOR

• Logic gates can be represented by symbols 
and their functions can be described using 
truth tables.

NOT, AND & OR gates

– NOT

– AND

– OR

X Z = X

Symbol Truth Table

X
Y

Z = X•Y

X
Y Z = X+Y

X     Z

0     1

1     0

X  Y     X•Y

0   0      0

0   1      0

1   0      0

1   1      1

X  Y     X+Y

0   0      0

0   1      1

1   0      1

1   1      1

X      Z

low   high

high  low

X    Y       X•Y

low low    low

low high   low

high low   low

high high  high

X     Y      X+Y

low low     low

low high   high

high low   high

high high  high
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NAND & NOR gates

– NAND

– NOR

Symbol Truth Table

X
Y

Z = X•Y
X  Y     X•Y

0   0      1

0   1      1

1   0      1

1   1      0

X  Y     X+Y

0   0      1

0   1      0

1   0      0

1   1      0

X
Y Z = X+Y

XOR & XNOR gates

– XOR

– XNOR

Symbol Truth Table

X
Y

Z = XY X  Y     XY

0   0      0

0   1      1

1   0      1

1   1      0

X  Y     XY

0   0      1

0   1      0

1   0      0

1   1      1

X
Y Z = XY
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Functional blocks

• With basic logic gates we can build up 
different functional blocks such as
– Adders

– Multiplexers

– Decoders

– Latches

– Registers

– Counters

Adders (1/3)

• One bit adder
– Truth table
– Logic function

Sum: S = A xor B
Carry: C = AB

– Digital circuit 

– Symbol

A    B S   C

0     0 0    0

0     1 1    0

1     0 1    0

1     1 0    1

S

C

A
B

1-bit
adder

A
B

S
C
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Adders (2/3)

• One bit adder with carry
– Called Full Adder

– Symbol

– Function
• Adding three 1-bit numbers

Full
adder

A
B
Cin

S
Cout

A  B  Cin S    Cout

0   0   0       0     0
0   0   1       1     0
0   1   0       1     0
0   1   1       0     1
1   0   0       1     0
1   0   1       0     1
1   1   0       0     1
1   1   1       1     1

Adders (3/3)

• n-bit adder
– Symbol

– Function
• Adding two n-bit numbers

– The result is n-bit sum and 1-bit carry

n-bit
adder

A
B

S
C

n

n

n
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Multiplexer

• Function:
– A multiplexer selects one input among multiple 

inputs and passes it to output.
• The selection is controlled by control signal Sn-1 ~S0

• The symbol:

D0

D1

Dm-1

Sn-1 S0

Y
m:1 
mux

…

OR mux

Example

• 4:1 multiplexer

• Function:

When S1S0 = 00, Y=D0
When S1S0 = 01, Y=D1
When S1S0 = 10, Y=D2
When S1S0 = 11, Y=D3

D0

D1

D2

D3

S1 S0

Y
4:1 
mux
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MUX example in AVR

Decoder

• Function:
– A decoder converses an n-bit input code to an m-

bit output code
• n  m  2n

• each valid input code word produces a unique output 
code 

– Typical n-to-2n decoder
• One line of outputs represents a specified input 

combination

– The symbol:

A0

A1

An-1

n-to-2n

decoder

B0
B1

B2n-1
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Example

• 3-to-8 register file address decoder

• Function: Address Output
A2 A1 A0 B0 B1 B2 B3 B4 B5 B6 B7
0   0   0 1   0    0   0   0   0   0   0
0   0   1 0   1    0   0   0   0   0   0
0   1   0 0   0    1   0   0   0   0   0
0   1   1 0   0    0   1   0   0   0   0
1   0   0 0   0    0   0   1   0   0   0 
1   0   1 0   0    0   0   0   1   0   0 
1   1   0 0   0    0   0   0   0   1   0 
1   1   1 0   0    0   0   0   0   0   1 

A0

A1

A2

3-to-8
decoder

B0
B1

B7

Multi-operation unit

• Perform 1-bit logic operations: 
– AND, OR, XOR, NOT

Constructed with functional components
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ALU

• Perform arithmetic and logic operations 
– such as addition, subtraction, logic AND, Logic OR

• Symbol:
– A, B are operands, S selects one of operations in 

ALU

A

B
ALU R

S

OR
ALU

Example

Operation selection Operation       
S2 S1 S0

0   0   0 Addition
0   0   1 Subtraction
0   1   0                               AND
0   1   1 OR
1   0   0 XOR
1   0   1  NOT
1   1   0 Increment

1   1   1                               Transfer
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ALU example in AVR

Latches and Flip Flops (1/3)

• A latch can store one bit information.

• Can be constructed in many ways.

• 2-NAND gate latch
• R=0, reset the latch

• S=0, set latch

• S = R = 1, store the data

R

S Q

Q
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Latches and Flip Flops (2/3)

• Clocked latch uses clock to control the latch 
operation
– When Clk=1,

• S=1, set the latch

• S=1, reset the latch

• S=R=0, store data

– When Clk=0,
• Data is retained

S

R

Q

Q

Clk

Latches and Flip Flops (3/3)

• Flip Flops use clock edges to trigger the data-
store operation. 
– A very commonly used Flip Flop is D FF

• On the rising edge of clock, the input data D is locked 
into the D flip flop

– Timing diagram

clk

D Q

Q

D       Q(n+1)

0             0
1             1

cp

D

Q
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Registers (1/3)

• A register is a collection of latches/FFs
– storing a vector of bit values

• symbol

PC

15          8 7           0

R(H) R(L)

Registers (2/3)

• 4-bit Parallel In Parallel Out (PIPO) registers.

D Q

CP

I3 Q3

D QI2 Q2

D QI1 Q1

D QI0 Q0

The 4-bit input I3I2I1I0 is 
“loaded” (copied to the 
output Q3Q2Q1Q0 of the D 
FFs) on the rising clock 
edge, and that output is 
held until the next clock 
edge.
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Registers (3/3)

• 4-bit Serial In Parallel Out (PISO) registers.

On the clock edge, the output of each flip-
flop is passed to the next flip-flop in the 
chain.  The input signal is fed serially (one bit 
at a time) into the first flip-flop.  The flip-flop 
outputs are available in parallel

Clk

D Q

Q0

D Q

Q1

D Q

Q2

D Q

Q3

Input

Counters (1/2)

• A counter increases/decrease its value every 
clock cycle.
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Counters (2/2)

• 4-bit counter

D3 Q3

D2 Q2

D1 Q1

D0 Q0

CLEAR

CP

LOAD

Clock

0

0

0

0

Reset

• with a synchronous load

• an asynchronous clear

• counts through 0, 1, 2, …, 15, 0 

Digital systems

• A digital system generally includes two parts:
– Datapath

• Performing a variety of operations on data from different 
sources

– Control unit
• Controlling the selection of the operation and data
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CPU

K. Meno, “Logic and Computer Design Fundamentals”

Example of datapath operations

K. Meno, “Logic and Computer Design Fundamentals”
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Control unit

• Control signals determine the operation of the 
datapath

• Where do the control signals come from?
– from control unit

• Control unit takes the instruction from 
instruction memory, together with the status 
values from datapath, to generate the control 
signals

Some practical designs

• Tri-state buffer
– Has three output states

• High level signal (1) passed from the input

• Low level signal (0)  passed from the input

• High impedance (Hi-Z)
– Disconnecting the input devices to the output devices

– Allows multiple logic gates to drive the same 
output (e.g, bus)

IN

EN

OUT

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1
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Some practical designs

• Open collector
– Act like one-way switch 

• When it is “Open”, no controlling operations

Example

Pullup resistor

Chip 1

Chip 2

Micro

INT/

Open collector
interrupt output 
that asserts low

Another open 
collector
interrupt output 
that asserts low

Microprocessor
interrupt input 
that asserts low
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For comprehensive coverage of digital systems 
design, please take COMP3222
– Digital Circuits and Systems 

– Offered in S2 each year

Reading material

• Appendix B in Computer Organization and 
Design, The hardware/software interface.
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