
1

COMP2121: Microprocessors and

Interfacing

I/O Devices (II)

http://www.cse.unsw.edu.au/~cs2121

Lecturer: Hui Wu

Term 2, 2019

2

Overview

• Keyboard

• LCD (Liquid Crystal Display)

1

2

2

3

Input Switches (1/2)

• Most basic of all binary input devices.

• The switch output is high or low depends on the the switch

position.

• Pull-up resistors are necessary in each switch to provide a

high logic level when the switch is open.

• Problem with switches:

❑ Switch bounce.

❖ When a switch makes contact, its mechanical springiness will cause the

contact to bounce, or make and break, for a few millisecond (typically 5

to 10 ms).

4

Input Switches (2/2)

Data Bus
½

74LS244

Octal

Buffer

Vcc

(a) Single-pole, single-throw

(SPST) logic switch

(b) Multiple pole switch.

R Typically 1K Ohm

Logic high with switch open

Logic low with switch closed

3

4

3

5

Software Debouncing

Two software debouncing approach:

• Wait and see:

❑ If the software detects a low logic level, indicating that switch has

closed, it simply waits for a short period, say 20 to 100ms, and

then test if the switch is still low.

• Counter-based approach:

❑ Initialize a counter to 10.

❑ Poll the switch every millisecond until the counter is either 0 or

20. If the switch output is low, decrement the counter; otherwise,

increment the counter.

❑ If the counter is 0, we know that switch output has been low for at

least 10 ms. If, on the other hand, the counter reaches 20, we

know that the switch has been closed for at least 10 ms.

6

NAND Latch Debouncer

R Typically

1K Ohm
Logic high with switch up

Logic low with switch down

5

6

4

7

Integrating Debouncer with Schmitt

Trigger

R

Logic high with switch up

Logic low with switch down

74LS14 Schmitt Trigger

8

One-Dimensional Array of Switches

I0

I2

I3

I4

I5

I6

I7

I1

E S2 S1 S0

Selected Input From

Output Port

Z

Scanned

Switch Data

To Input Port

74LS151 8

to 1

Multiplexer

A
Vcc

7

8

5

9

One-Dimensional Array of Switches

• Switch bounce problem must be solved.

• The array of switches must be scanned to find out which

switches are closed or open.

❑ Software is required to scan the array. As the software outputs a

3-bits sequence from 000 to 111, the multiplexer selects each of

the switch inputs. The software scanner then read one bit at an

input port.

• The output of switch array could be interfaced directly to

an eight-bit port at point A.

• To save I/O lines, a 74LS1518 Input Multiplexer can be

used.

10

Keyboard Matrix of Switches (1/3)

I0

I2

I3

I4

I5

I6

I7

I1

E
S2 S1 S0

Select Input From

Output Port

Z

Scanned

Switch Data

To Input Port

00 01 02 0706

10 11 12 17

70 71 77

O0 O1 O2 O3 O7O6O5O4

74LS151

8-Input

Multiplexer

A0A1A2E3 E2 E1

Vcc

B

A

Scan Input From Output Port
74LS138 3-of-

8 Decoder

Vcc

12

9

10

6

11

Keyboard Matrix of Switches (2/3)

• A keyboard is an array of switches arranged in a two-

dimensional matrix.

• A switch is connected at each intersection of vertical and

horizontal lines.

• Closing the switch connects the horizontal line to the vertical

line.

• 8*8 keyboard can be interfaced directly into 8-bit output and

input ports at point A and B.

• Some input and output lines can be saved by using a 74LS138

3-of-8 decoder and a 74LS1518 Input Multiplexer.

12

Keyboard Matrix of Switches (3/3)

• Software can scan the key board by outputting a three-bit code

to 74LS138 and then scanning the 74LS151 multiplexer to

find the closed switch.

❑ The combination of the two 3-bit scan codes identifies which switch is

closed. For example, the code 000000 scan switch 00 in the upper left-

hand corner.

• The diode prevents a problem called ghosting.

11

12

7

13

Ghosting (1/2)

Col 0 Col 1 Col 2

00 01 02

10

20

11

21

12

22

R3 R2 R1

Row 0 (Pulled low, error)

Row 1 (Pulled low, OK)

Row 2 (High, OK)

Low

(Scanned column)

Vcc

14

Ghosting (2/2)

• Ghosting occurs when several keys are pushed at once.

• Consider the case shown in the figure where three switches

01, 10 and 11 are all closed. Column 0 is selected with a logic

low and assume that the circuit does not contain the diodes. As

the rows are scanned, a low is sensed on Row 1, which is

acceptable because switch 10 is closed. In addition, Row 0 is

seen to be low, indicating switch 00 is closed, which is NOT

true. The diodes in the switches eliminate this problem by

preventing current flow from R1 through switches 01 and 11.

Thus Row 0 will not be low when it is scanned.

13

14

8

15

N-Key Rollover

• The problem with a typist hitting more than one key at once,

or rapidly rolling the finger from one key to another, is called

n-key rollover.

• Solutions:

❑ Store the rapidly pressed keys in first in , first out (FIFO) buffer for

later readout. Or

❑ Use n-key lockout, where only the first or last of the sequence of keys

pressed is recorded.

16

Key Scanning (1/3)

Keypad Layout

15

16

9

17

Key Scanning (2/3)

Keypad Schematic

18

Key Scanning (3/3)

1. Connect the columns to output pins, and the rows to
input pins.

2. Sequentially drive each column to a low voltage
(write zero to the corresponding output pin) and
sample each row (read from the corresponding input
pin) at the same instance.
❑ Since the rows are all pulled high with internal pull-up

resistors, all four inputs will normally be high. If a key is
pressed in a column which is at a low level, that low level
will be conducted to the input pin through the closed key
and the corresponding row will be sensed as a low.

The following procedure describes how the software

knows which key was pressed:

17

18

10

19

IMPORTANT NOTICE:

• The labels on PORTL are reversed, i.e., PLi is actually PL7-i (i=0, 1,

…, 7).

Board settings:

• Connect the four columns C0~C3 of the keypad to PL3~PL0 of PORTL
and the four rows R0~R3 to PL7~PL4 of PORTL.

• Connect LED0~LED7 of LEDs to PC0~PC7 of PORTC.

Output of the sample code:

• Each key has a code of one byte.

❑ For a number key (0~9, A, B, C, D), its code is itself. For example,
the code of A is 0xA (10 in decimal).

❑ The code of * is 0xE and the code of # is 0xF.

• When a key is pressed, the key scanning program stores its code in the
register r16 and displays its binary value on LEDs.

Sample Code for Key Scanning (1/10)

20

make PL0~PL3 of PORTL all outputs;

make bits PL4~PL7all inputs;

make PC0~PC7 all outputs;

Turn all LEDs on;

for (col=0; col<=3; col++)

{ write 0 to PLi where i=col;

for (row=0; row<=3; row++)

{ read PL4~PL7;

if (the value of PL4~PL7 != 0xF) /* one key was pressed */

convert() ; /* convert() computes the code for the key pressed and
write the binary value of the code on LEDs */ }

}

Sample Code for Key Scanning (2/10)

The pseudo code of the key scanning procedure:

19

20

11

21

.include "m2560def.inc"

.def temp =r16

.def row =r17

.def col =r18

.def mask =r19

.def temp2 =r20

.equ PORTLDIR = 0xF0

.equ INITCOLMASK = 0xEF

.equ INITROWMASK = 0x01

.equ ROWMASK = 0x0F

Sample Code for Key Scanning (3/10)

22

.cseg

jmp RESET

RESET:

ldi temp, low(RAMEND)

out SPL, temp

ldi temp, high(RAMEND)

out SPH, temp

ldi temp, PORTLDIR ; columns are outputs, rows are inputs

sts DDRL, temp

ser temp

out DDRC, temp ; Make PORTC all outputs

out PORTC, temp ; Turn on all the LEDs

Sample Code for Key Scanning (4/10)

21

22

12

23

main: ; main keeps scanning the keypad to find which key is pressed.

ldi mask, INITCOLMASK ; initial column mask

clr col ; initial column

colloop:

sts PORTL, mask ; set column to mask value (sets column 0 off)

ldi temp, 0xFF ; implement a delay so the hardware can stabilize

delay:

dec temp

brne delay

lds temp, PINL ; read PORTL

Sample Code for Key Scanning (5/10)

24

andi temp, ROWMASK ; read only the row bits

cpi temp, 0xF ; check if any rows are grounded

breq nextcol ; if not go to the next column

ldi mask, INITROWMASK ; initialise row check

clr row ; initial row

rowloop:

mov temp2, temp

and temp2, mask ; check masked bit

brne skipconv ; if the result is non-zero, we need to look at next row

rcall convert ; if bit is clear, convert the bitcode

jmp main ; and start again

Sample Code for Key Scanning (6/10)

23

24

13

25

skipconv:

inc row ; else move to the next row

lsl mask ; shift the mask to the next bit

jmp rowloop

nextcol:

cpi col, 3 ; check if we’re on the last column

breq main ; if so, no buttons were pushed, so start again.

sec ; else shift the column mask:

rol mask ; We must set the carry bit and then rotate left by a bit,

; shifting the carry into bit zero.

Sample Code for Key Scanning (7/10)

26

inc col ; increment column value

jmp colloop ; check the next column.

convert: ; convert function converts the row and column given to a

; binary number and also outputs the value to PORTC.

; inputs come from registers row and col and output is in temp.

cpi col, 3 ; if column is 3 we have a letter

breq letters

cpi row, 3 ; if row is 3 we have a symbol or 0

breq symbols

mov temp, row ; otherwise we have a number (1-9)

Sample Code for Key Scanning (8/10)

25

26

14

27

lsl temp ; temp = row * 2

add temp, row ; temp = row * 3

add temp, col ; add the column address to get the offset from 1

inc temp ; add 1. The value of switch is row*3 + col + 1.

jmp convert_end

letters: ldi temp, 0xA

add temp, row ; increment from 0xA by the row value

jmp convert_end

symbols: cpi col, 0 ; check if we have a star

breq star

cpi col, 1 ; or if we have zero

Sample Code for Key Scanning (9/10)

28

breq zero

ldi temp, 0xF ; we’ll output 0xF for hash

jmp convert_end

star:

ldi temp, 0xE ; we’ll output 0xE for star

rjmp convert_end;

zero: clr temp ; we have zero

convert_end:

out PORTC, temp ; write value to PORTC

ret ; return to caller

Sample Code for Key Scanning (10/10)

27

28

15

29

Dot Matrix Character LCD (Liquid

Crystal Display)

• Equipped with an internal character generator ROM, RAM

and RAM for display data.

❑ Characters are displayed using a dot matrix.

• Has its own instruction set.

• All display functions are controllable by instructions.

30

Principle of Dot Matrix LCD

• Display units (dots) are arranged in rows and columns to form

a character, a number, a symbol or graphics.

29

30

16

31

Pin Assignments

32

Pin Descriptions

31

32

17

33

LCD Block Diagram

34

LCD Registers (1/2)

Two internal 8-bit registers:

• Data Register (DR)

❑ The DR is a read/write register used for temporarily storing data to

be read/written to/from the DD RAM or CG RAM.

❑ Data written into the DR is automatically written into DD RAM or

CG RAM by an internal operation of the display controller.

❑ The DR is also used to store data when reading out data from DD

RAM or CG RAM. When address information is written into IR,

data is read out from DD RAM or CG RAM to DR by an internal

operation. Data transfer is then completed by reading the DR.

❑ After performing a read from the DR, data in the DD RAM or CG

RAM at the next address is sent to the DR for the next read cycle.

33

34

18

35

LCD Registers (2/2)

• Instruction Register (IR)

❑ The IR is a write-only register storing LCD instructions and

addresses for the Display Data RAM (DD RAM) or the Character

Generator RAM (CG RAM).

• The register select (RS) signal determines which of these

two registers is selected.

36

Busy Flag

• When the busy flag is high or “1” the module is

performing an internal operation and the next instruction

will not be accepted.

• The busy flag outputs to DB7 when RS=0 and a read

operation is performed. The next instruction must not be

written until ensuring that the busy flag is low or “0”.

35

36

19

37

LCD Instructions (1/6)

• Clear Display

❑ Writes the space code “20” (hexadecimal) into all addresses of

DD RAM. Returns display to its original position if it was

shifted. In other words the display clears and the cursor or blink

moves to the upper left edge of the display. The execution of

clear display instruction sets entry mode to increment mode.

38

LCD Instructions (2/6)

• Return Home

❑ Return the display to its original position if it was shifted. DD

RAM contents do not change.

❑ The cursor or the blink moves to the upper left edge of the

display. Text on the display remains unchanged.

37

38

20

39

LCD Instructions (3/6)

• Function Set

❑ Sets the interface data length, the number of lines, and character

font.

❑ DL: Sets interface data length. Data is sent or received in 8-bit

length (DB7 ~ DB0) when DL = “1”, and in 4-bit length (DB7

~ DB4) when DL = 0. When the 4-bit length is selected, data

must be sent or received twice.

40

LCD Instructions (4/6)

• Function Set

❑ N: Sets the number of lines

❖ N = “0” : 1 line display (1/8 duty)

❖ N = “1” : 2 line display (1/16 duty)

❑ F: Sets character font.

❖ F = “1” : 5 x 10 dots

❖ F = “0” : 5 x 7 dots

❑ Note: Perform the function at the head of the program before

executing all instructions (except Busy flag/address read). From

this point, the function set instruction cannot be executed other

than to change interface length.

39

40

21

41

LCD Instructions (5/6)

• Read busy flag and address

❑ Reads the busy flag (BF) and value of the address counter (AC).

BF = 1 indicates that on internal operation is in progress and the

next instruction will not be accepted until BF is set to “0”.

❑ The BF status should be checked before each write operation.

❑ At the same time the value of the address counter expressed in

binary AAAAAAA is read out. The address counter is used by

both CG and DD RAM and its value is determined by the

previous instruction.

42

LCD Instructions (6/6)

• Write data to CG or DD RAM

❑ Writes binary 8-bit data DDDDDDDD to the CG or DD RAM.

❑ The previous designation determines whether the CG or DD

RAM is to be written (CG RAM address set or DD RAM address

set). After a write the entry mode will automatically increase or

decrease the address by 1. Display shift will also follow the entry

mode.

41

42

22

43

Timing Characteristics of Write (1/2)

44

Timing Characteristics of Write (2/2)

43

44

23

45

AVR Code for Writing Commands

; assume LCD D0-D7 -> PF0-PF7 and LCD BE-RS -> PA4-PA7

out PORTF, data ; send the command stored in the register data to PORTF

clr temp ; temp is a register defined in main

out PORTA, temp ; RS = 0, RW = 0 for a command write

nop ; delay to meet timing (Set up time)

sbi PORTA, 6 ; turn on the enable pin

nop ; delay to meet timing (Enable pulse width)

nop

nop

cbi PORTA, 6 ; turn off the enable pin

nop ; delay to meet timing (Enable cycle time)

nop

nop

46

AVR Code for Writing Data

; assume LCD D0-D7 -> PF0-PF7 and LCD BE-RS -> PA4-PA7

out PORTF, data ; send the command stored in the register data to PORTF

ldi temp, 0b10000000

out PORTA, temp ; RS = 1, RW = 0 for a data write

nop ; delay to meet timing (Set up time)

sbi PORTA, 6 ; turn on the enable pin

nop ; delay to meet timing (Enable pulse width)

nop

nop

cbi PORTA, 6 ; turn off the enable pin

nop ; delay to meet timing (Enable cycle time)

nop

nop

45

46

24

47

Timing Characteristics of Read (1/2)

48

Timing Characteristics of Read (2/2)

47

48

25

49

AVR Code for Reading Busy Flag (1/2)

; assume LCD D0-D7 -> PF0-PF7 and LCD BE-RS -> PA4-PA7

; the following code keeps checking the busy flag until the busy flag is 0.

clr temp

out DDRF, temp ; make PORTF be an input port for now

out PORTF, temp

ldi temp, 0b00100000

out PORTA, temp ; RS = 0, RW = 1 for a command port read

busy_loop:

nop ; delay to meet timing (Set up time / Enable cycle time)

sbi PORTA, 6 ; turn on the enable pin

50

AVR Code for Reading Busy Flag (2/2)

nop ; delay to meet timing (Data delay time)

nop

nop

in temp, PINF ; read value from LCD

cbi PORTA, 6 ; turn off the enable pin

sbrc temp, 7 ; if the busy flag is set

rjmp busy_loop ; repeat command read

clr temp ; else

out PORTA, temp ; turn off read mode,

ser temp

sts DDRF, temp ; make PORTD an output port again

49

50

26

51

LCD Initialization (1/2)

52

LCD Initialization (2/2)

51

52

27

53

AVR Code for LCD Initialization (1/3)

ser temp ; temp is a register defined in main

sts DDRD, temp ; PORTF, the data port is usually all outputs

out DDRA, temp ; PORTA, the control port is always all outputs

ldi del_lo, low(15000)

ldi del_hi, high(15000)

rcall delay ; delay for > 15ms

; function set command with N = 1 and F = 0

ldi data, 0b00111000

rcall lcd_write_com ; 1st Function set command with 2 lines and 5*7 font

ldi del_lo, low(4100) ; del_high:del_low is the input of the delay subroutine

ldi del_hi, high(4100) ; which is a loop defined elsewhere

54

AVR Code for LCD Initialization (2/3)

rcall delay ; delay for > 4.1ms

rcall lcd_write_com ; 2nd Function set command with 2 lines and 5*7 font

ldi del_lo, low(100)

ldi del_hi, high(100)

rcall delay ; delay for > 100us

rcall lcd_write_com ; 3rd Function set command with 2 lines and 5*7 font

rcall lcd_write_com ; final Function set command with 2 lines and 5*7 font

rcall lcd_wait_busy ; wait until the LCD is ready

ldi data, 0b00001000

rcall lcd_write_com ; turn Display off

rcall lcd_wait_busy ; wait until the LCD is ready

53

54

28

55

AVR Code for LCD Initialization (3/3)

ldi data, 1

rcall lcd_write_com ; clear display

rcall lcd_wait_busy ; wait until the LCD is ready

; entry set command with I/D = 1 and S = 0

ldi data, 0b00000110

rcall lcd_write_com ; set Entry mode: Increment = yes and Shift = no

rcall lcd_wait_busy ; wait until the LCD is ready

; display on command with C = 0 and B = 1

ldi data, 0b000001110

rcall lcd_write_com ; turn display on with a cursor that doesn't blink

56

Reading

1. Chapter 7: Computer Buses and Parallel Input and Output.

Microcontrollers and Microcomputers by Fredrick M. Cady.

2. Dot Matrix Character LCD User’s Manual

(http://www.cse.unsw.edu.au/~cs2121/LCD_Manual.pdf).

55

56

