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This time ...

• We look at the robot equivalent of spatiotemporal 
memory



Probabilistic Robotics



Localisation with Landmarks
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Errors

• Measurement errors 

• sensors are never 100% accurate 

• Process errors 

• actions never do exactly what they’re supposed to



Example

• Estimating distance to the ball



! !

Measurement Error
Experiments determine errors in distance estimation



Localisation with Landmarks
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Localisation with Landmarks
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Conditional Probability

P(E|H) ≡ the probability of observing E if H is true



Bayes’ Rule
• Probability I have a cold if you hear me cough 

• I.e. if we know the prior probability that I have a 
cold (without any evidence) and I know that a cold 
causes a cough, with some probability, then we 
can calculate the posterior probability

P(cold | cough)∝P(cold)× P(cough | cold)



Probabilistic Inference
• Make inferences using probabilities 

• Based on Bayes’ rule:

bel(xt )∝bel(xt−1) × prob(observation)

P(H | E)∝P(H )× P(E |H )

or



Updating State Estimate
• The Kalman filter is commonly used to update the estimate of the robot’s 

state 

• Two phases: 

1. Prediction (Process Update) 

• predicts where the robot will be after performing an action 

2. Correction (Observation Update) 

• use observations to correct prediction 

• What follows is only a sketch of the Kalman filter 

• It’s nowhere near the complete algorithm



Simplification

• Only one measurement and action 

• When there are more, must account for all 
interactions 

• Math becomes more complex 

• Scalar variables are replaced by matrices



Process Update (Simplified)

•    is the predicted new state after action, u 

• Update variance with process noise, Q 

• errors accumulate

x← x + u

varx ← varx +Q

x



Measurement Update
• Move position estimate toward measurement 

estimate but proportional to error estimates  

• z is the measured state 

• new state estimate is predication plus difference 
between prediction and measurement, proportional 
to confidence in measurement

x← x + K × z − x( )



Measurement Update

• update x by the difference in the measured value, z, and the expected 
value, x, scaled by how much we trust the observation 

• If measurement is certain, new state becomes measured state 

• otherwise, make change proportional to difference between 
measurement and prediction

x← x + K × z − x( )
if K = 1

x← x + z − x
x← z



Measurement Update 
(Simplified)

• As measurement error R 
approaches 0, actual measurement 
z is trusted more and more, while 
predicted measurement x̅ is trusted 
less and less. 

• As state error estimate varx 
approaches 0, actual measurement 
z is trusted less and less, while 
predicted measurement x̅ is trusted 
more and more.

K ← varx
varx + R

x← x + K × z − x( )



Robot estimating  
state of door



Initial beliefs

bel X0 = open( ) = 0.5
bel X0 = closed( ) = 0.5

• Door can be in one of two states, open or closed 

• Represented by state variable, X 

• Initially, X has equal probability of being open or 
closed



Measurement Noise
• Specify the probability of sensor given correct answer 

• Z is the measurement, X is the actual value 

• Only 0.2 error probability when door is closed 

• but 0.4 error probability when door is open

p Zt = sense_open Xt = is_open( ) = 0.6
p Zt = sense_closed Xt = is_open( ) = 0.4
p Zt = sense_open Xt = is_closed( ) = 0.2
p Zt = sense_closed Xt = is_closed( ) = 0.8



Process Noise
• Robot uses its manipulator to push door open 

• If already open, door stays open 

• If closed, robot has 0.8 chance that door will be open 
after a push

p Xt = is_openUt = push,Xt−1 = is_open( ) = 1
p Xt = is_closedUt = push,Xt−1 = is_open( ) = 0
p Xt = is_openUt = push,Xt−1 = is_closed( ) = 0.8
p Xt = is_closedUt = push,Xt−1 = is_closed( ) = 0.2



Process Noise
• The robot may do nothing 

• World does not change

p Xt = is_openUt = do_nothing,Xt−1 = is_open( ) = 1
p Xt = is_closedUt = do_nothing,Xt−1 = is_open( ) = 0
p Xt = is_openUt = do_nothing,Xt−1 = is_closed( ) = 0
p Xt = is_closedUt = do_nothing,Xt−1 = is_closed( ) = 1



Probabilistic Robotics

• Belief in a state variable x at time t is its 
probability at t given all past measurements and 
actions: 

• Belief after action ut but before observation zt,  
i.e. after prediction but before correction:

bel xt( ) = p xt z1..t ,u1..t( )

bel xt( ) = p xt z1..t−1,u1..t( )



Bayes’ Rule
• Don’t have to use entire history 

• Use Bayes’ Rule 

• Belief is a probability distribution over state variable 

• Update must sum probabilities of outcomes of 
actions for each possible value

bel(xt )∝ prob(observation)× bel(xt−1)



Example
• If door is open and robot pushes,  

what is the outcome? 

• If door is open and robot does nothing,  
what is the outcome? 

• If door is closed and robot pushes,  
what is the outcome? 

• If door is closed and robot does nothing,  
what is the outcome?



Bayes Filter
For all state variables 

Predict value after the next action 

Update the value based on the next measurement 

Prediction for xt is the sum of predictions for each value of xt 

Update prediction by last observation 

η is a normalising factor to keep probabilities in 0 .. 1.

forall xt  do

bel xt( ) = p xt ut , xt−1( )∫ bel xt−1( ) dxt−1

bel xt( ) =η p zt xt( ) bel xt( )



Example
• At t = 1 the robot takes no action but senses an open door 

• u1 = do_nothing 

• z1 = sense_open

bel x1( ) = p x1 u1, x0( )∫ bel x0( ) dx0
= p x1 u1, x0( ) bel x0( )

x0
∑

= p X1 Ut = do_nothing,Xo = is_open( ) bel X0 = is_open( )
+ p X1 Ut = do_nothing,Xo = is_closed( ) bel X0 = is_closed( )

Integral becomes a sum 
because values of x are 

discrete



Example
Substitute values for X1

bel x1 = is_open( )
= p X1 = is_openUt = do_nothing,Xo = is_open( ) bel X0 = is_open( )
+ p X1 = is_openUt = do_nothing,Xo = is_closed( ) bel X0 = is_closed( )

= 1× 0.5 + 0 × 0.5
= 0.5

bel x1 = is_closed( )
= p X1 = is_closedUt = do_nothing,Xo = is_open( ) bel X0 = is_open( )
+ p X1 = is_closedUt = do_nothing,Xo = is_closed( ) bel X0 = is_closed( )

= 0 × 0.5 +1× 0.5
= 0.5



Measurement Update
bel x1( ) =η p z1 = sense_open x1( ) bel x1( )

bel x1 = is_open( ) =η p z1 = sense_open x1 = is_open( ) bel x1 = is_open( )
=η × 0.6 × 0.5
=η × 0.3

bel x1 = is_closed( ) =η p z1 = sense_open x1 = is_closed( ) bel x1 = is_closed( )
=η × 0.2 × 0.5
=η × 0.1

η = 1
0.3+ 0.1

= 2.5

bel x1 = is_open( ) = 0.75

bel x1 = is_closed( ) = 0.25

Normalise to ensure that 
probabilities add up to 1



Iterate for more actions
If the next action is push and the measurement is 
sense_open:

bel x1 = is_open( ) = 1× 0.75 + 0.8 × 0.25 = 0.95

bel x1 = is_closed( ) = 0 × 0.75 + 0.2 × 0.25 = 0.05

and

bel x1 = is_open( ) =η × 0.6 × 0.95 ≈ 0.983

bel x1 = is_closed( ) =η × 0.2 × 0.05 ≈ 0.017



Position Tracking
• Robot moves 

• Predict new position based on what motor 
actions are expected to do 

• Measure 

• Uses sensors to estimate motion 

• Update position estimate (often a Kalman Filter)



RoboCup Localisation
• Estimates of robot and ball 

positions include variance (or 
error) 

• Robot has errors in 

• x 

• y 

• heading 

• Robot variance is shown as an 
ellipse and sector



Particle Filter

Randomly guess 
position

Move particles according 
to motion model, including 
process noise

Weight particles by 
probability that measurement 
corresponds to particle

Drop low weight particles 
and resample

1.

2.

3.

4.



Particle Filter
https://github.com/mjl/particle_filter_demo



Particle Filter
ParticleFilter(χ t−1,ut , zt )
χ t = χ t =∅
for m = 1 to M :

sample xt
[m] ~ p xt |ut ,xt−1

[m]( )
wt
[m] = p zt | xt

[m]( )
χ t = χ t + xt

[m],wt
[m]

for m = 1 to M :
draw i with probabilityα wt

[i]

add xt
[i] to χ t

return χ t

Each particle is a hypothesis 
of what the state is at time t

Sample from the state 
transition distribution

Weight is probability of 
measurement for particle

Resample by weight}



Measurement Errors
• Position tracking usually uses wheel encoders to 

estimate motion 

• Unreliable in rescue robots 

• We use lasers and RGB-D cameras 

• Estimate motion from difference in successive 
scans



Simultaneous Localisation 
and Mapping (SLAM)

• Depth sensors also give 
distance to objects 

• Similar estimation methods 
can be used to update  map



Loop Closure 
(Full SLAM)

• Position tracking alone will accumulate errors 

• If the robot recognise a landmark that it has seen 
before 

• it can correct drift by updating estimate based on 
measurement of landmark 

• Error correction is back-propagated 



Probabilistic Robotics
• Position tracking, mapping, localisation 

• How confident are we that a robot arm has gripped an object? 

• Is what I’m seeing really a ball or is it a cylinder, end-on? 

• Is the ground ahead a flat, traversable surface or is it the 
surface of a deep lake? 

• If I drive into that obstacle, what are the chances that it’s a 
bush that I can go over or it’s a boulder that I’ll crash into? 

• How confident is my autonomous car in detecting pedestrians?


