COMP9444
Neural Networks and Deep Learning

3b. Convolutional Networks

Textbook, Sections 6.2.2, 7.9, 9.1-9.5
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Outline

Convolutional Networks (7.9)
Softmax (6.2.2)

Convolution Operator (9.1-9.2)
Max Pooling (9.3-9.4)

Stride (9.5)
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Convolutional Networks
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convolution + pooling layers fully connected layers ~ Nx binary classification

Suppose we want to classify an image as a bird, sunset, dog, cat, etc.

If we can i1dentify features such as feather, eye, or beak which provide
useful information in one part of the image, then those features are likely
to also be relevant in another part of the image.

We can exploit this regularity by using a convolution layer which applies
the same weights to different parts of the image.
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Hubel and Weisel — Visual Cortex

cells in the visual cortex respond to lines at different angles
cells in V2 respond to more sophisticated visual features
Convolutional Neural Networks are inspired by this neuroanatomy

CNN’s can now be simulated with massive parallelism, using GPU’s
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Convolutional Network Components

Input Convolutional ~ Pooling  Fully Connected Output
Layer Layer Layer Layer Layer
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convolution layers: extract shift-invariant features from the previous
layer

subsampling or pooling layers: combine the activations of multiple

units from the previous layer into one unit
fully connected layers: collect spatially diffuse information

output layer: choose between classes
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MNIST Handwritten Digit Examples
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CIFAR Image Examples
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Convolutional Network Architecture

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected
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There can be multiple steps of convolution followed by pooling, before

reaching the fully connected layers.

Note how pooling reduces the size of the feature map (usually, by half in
each direction).
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Softmax (6.2.2)

Consider a classification task with N classes, and assume z; is the output
of the unit corresponding to class j.

We assume the network’s estimate of the probability of each class j is
proportional to exp(z;). Because the probabilites must add up to 1, we
need to normalize by dividing by their sum:

, exp(z;)
Prob(i) =
ZN—1 exp(z;)
log Prob(i) — logZ | €Xp (z/)

If the correct class is i, we can treat —logProb(i) as our cost function.
The first term pushes up the correct class i, while the second term mainly
pushes down the incorrect class j with the highest activation (if j # i).
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Convolution Operator

Continuous convolution

s(t) = (xxw)(t) = /x(a)w(t —a)da

Discrete convolution

oo

s(t) = (xxw)(t) = Z x(a)w(t —a)

ad=——o0

Two-dimensional convolution

S(j.k) = (K+I)(j,k) =Y Y K(m,n)I(j+m,k+n)

Note: Theoreticians sometimes write /(j —m, k — n) so that the operator is
commutative. But, computationally, it 1s easier to write it with a plus sign.
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Convolutional Neural Networks
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Assume the original image 1s J X K, with L channels.

We apply an M x N “filter” to these inputs to compute one hidden unit in
the convolution layer. In this example J =6,K =7,L =3, M =3,N = 3.
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Convolutional Neural Networks
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The same weights are applied to the next M X N block of inputs, to
compute the next hidden unit in the convolution layer (“‘weight sharing™).
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Convolutional Neural Networks

If the original image size 1s J X K and the filter 1s size M X N, the
convolution layer will be (J4+1—-M) x (K+1—N)
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Example: LeNet

For example, in the first convolutional layer of LeNet,
J=K=32,M=N =5.

The width of the next layer is
J+1-M=32+1-5=28
Question: If there are 6 filters in this layer, compute the number of:
weights per neuron?
neurons?
connections?

independent parameters?
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Example: LeNet

For example, 1n the first convolutional layer of LeNet (color images),
J=K=32,M=N=5.

The width of the next layer is
J+1-M=32+1-5=28

Question: If there are 6 filters in this layer, compute the number of:

weights per neuron? Il +5%x5x%x3 = 76
neurons? 28 X 28 X 6 = 4,704
connections? 28 x28x6x76  =357,504
independent parameters? 6 x 76 = 456
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Convolutional Networks

Max Pooling (9.3-9.4)

Single depth slice
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Example: LeNet trained on MNIST

C3: 1. maps 16&@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT 6@28x28
52: f. maps CS5: layer gg. layer OUTPUT
]

fene 6@14x14 rr rl- 120 84 2
=
|T_

| | Full mnAamian | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

The 5 x 5 window of the first convolution layer extracts from the original
32 x 32 image a 28 x 28 array of features. Subsampling then halves this
size to 14 x 14. The second Convolution layer uses another 5 X 5 window
to extract a 10 x 10 array of features, which the second subsampling layer
reduces to 5 x 5. These activations then pass through two fully connected
layers into the 10 output units corresponding to the digits 0’ to ’9’.
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Convolution with Zero Padding

Sometimes, we treat the off-edge inputs as zero (or some other value).
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Convolution with Zero Padding

This 1s known as “Zero-Padding”.
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Convolution with Zero Padding

With Zero Padding, the convolution layer is the same size as the original
image (or the previous layer).
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Example: AlexNet (2012)

IPT: Soag \dense

o
~

dense | [|dense

1000

128 Max
Max 128 Max pooling
pooling pooling

2048 2048

5 convolutional layers + 3 fully connected layers
max pooling with overlapping stride
softmax with 1000 classes

2 parallel GPUs which interact only at certain layers
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Stride (9.5)

Assume the original image is J x K, with L channels.
We again apply an M x N filter, but this time with a “stride” of s > 1.
In this example J =7, K =9, L =3 M =3,N =3,5s = 2.
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Stride

ZJI:,k =& (bi + ZZZ:_(; ]1;/:_01 Kll;m,nvjlﬂLm,kJrn)
[

The same formula 1s used, but j and k are now incremented by s each time.
The number of free parametersis 1 +L XM x N
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Stride Dimensions

j takes on the values 0,s,2s,...,(J —M)
k takes on the values 0, s,2s,...,(K—N)
(

The next layeris (1 4+ (J—M)/s) by (1+(K—N)/s)
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Stride with Zero Padding

When combined with zero padding of width P,
j takes on the values 0,s,2s,...,(J+2P—M)
k takes on the values 0, s,2s,...,(K+2P—N)
The next layer is (1+ (J+2P—M)/s) by (1+ (K+2P—N)/s)
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Example: AlexNet Conv Layer 1

For example, 1n the first convolutional layer of AlexNet,
J=K=224,P=2,M=N=11,s=4.

The width of the next layer is
1+(J+2P—M)/s=1+(224+2x2—11)/4=55
Question: If there are 96 filters in this layer, compute the number of:
weights per neuron?
neurons?
connections?

independent parameters?
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Example: AlexNet Conv Layer 1

For example, 1n the first convolutional layer of AlexNet,
J=K=224,P=2,M=N=11,s=4.

The width of the next layer is
1+(J—M)/s=1+(224+2x2—11)/4=155

Question: If there are 96 filters in this layer, compute the number of:

weights per neuron? I1+11x11x3 = 364
neurons? 55 x 55 %96 = 290,400
connections? 55 x55%x96 x364 =105,705,600
independent parameters? 96 x 364 = 34,944
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Overlapping Pooling

If the previous layer is J X K, and max pooling is applied with width F

and stride s, the size of the next layer will be
(1+(J—=F)/s) x(1+(K—F)/s)

Question: If max pooling with width 3 and stride 2 is applied to the
features of size 55 x 55 in the first convolutional layer of AlexNet, what is

the size of the next layer?
Answer:
Question: How many independent parameters does this add to the model?

Answer:
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Overlapping Pooling

If the previous layer is J X K, and max pooling is applied with width F

and stride s, the size of the next layer will be
(1+(J—=F)/s) x(1+(K—F)/s)

Question: If max pooling with width 3 and stride 2 is applied to the
features of size 55 x 55 in the first convolutional layer of AlexNet, what is

the size of the next layer?
Answer: 1+ (55—3)/2=27.
Question: How many independent parameters does this add to the model?

Answer: None! (no weights to be learned, just computing max)
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Convolutional Filters

First Layer Second Layer
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