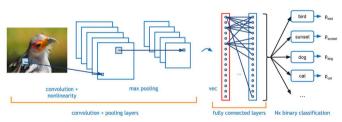
COMP9444 Neural Networks and Deep Learning 3b. Convolutional Networks

Textbook, Sections 6.2.2, 7.9, 9.1-9.5

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Convolutional Networks 2 COMP9444 19t3 Convolutional Networks

Convolutional Networks



Suppose we want to classify an image as a bird, sunset, dog, cat, etc.

If we can identify features such as feather, eye, or beak which provide useful information in one part of the image, then those features are likely to also be relevant in another part of the image.

We can exploit this regularity by using a convolution layer which applies the same weights to different parts of the image. COMP9444 19t3 Convolutional Networks

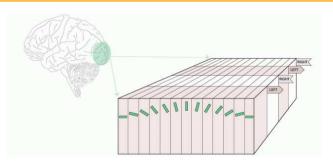
Outline

- Convolutional Networks (7.9)
- Softmax (6.2.2)
- Convolution Operator (9.1-9.2)
- Max Pooling (9.3-9.4)
- Stride (9.5)

COMP9444 © Alan Blair, 2017-19

3

Hubel and Weisel - Visual Cortex

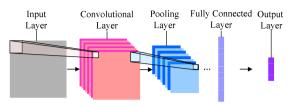


- cells in the visual cortex respond to lines at different angles
- cells in V2 respond to more sophisticated visual features
- Convolutional Neural Networks are inspired by this neuroanatomy
- CNN's can now be simulated with massive parallelism, using GPU's

COMP9444 © Alan Blair, 2017-19 COMP9444 © COMP9444

COMP9444 19t3 Convolutional Networks 4 COMP9444 19t3 Convolutional Networks

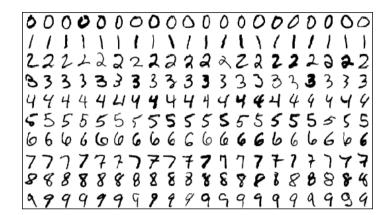
Convolutional Network Components



- **convolution layers**: extract shift-invariant features from the previous layer
- **subsampling or pooling layers**: combine the activations of multiple units from the previous layer into one unit
- **fully connected layers**: collect spatially diffuse information
- **output layer**: choose between classes

COMP9444 © Alan Blair, 2017-19

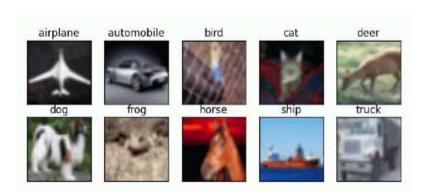
MNIST Handwritten Digit Examples



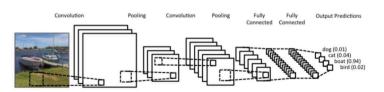
COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Convolutional Networks 6 COMP9444 19t3 Convolutional Networks 7

CIFAR Image Examples



Convolutional Network Architecture



There can be multiple steps of convolution followed by pooling, before reaching the fully connected layers.

Note how pooling reduces the size of the feature map (usually, by half in each direction).

COMP9444 19t3 Convolutional Networks 8 COMP9444 19t3 Convolutional Networks

Softmax (6.2.2)

Consider a classification task with N classes, and assume z_j is the output of the unit corresponding to class j.

We assume the network's estimate of the probability of each class j is proportional to $\exp(z_j)$. Because the probabilites must add up to 1, we need to normalize by dividing by their sum:

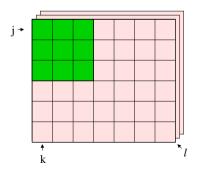
$$Prob(i) = \frac{\exp(z_i)}{\sum_{j=1}^{N} \exp(z_j)}$$
$$\log Prob(i) = z_i - \log \sum_{j=1}^{N} \exp(z_j)$$

If the correct class is i, we can treat $-\log \operatorname{Prob}(i)$ as our cost function. The first term pushes up the correct class i, while the second term mainly pushes down the incorrect class j with the highest activation (if $j \neq i$).

COMP9444 © Alan Blair. 2017-19

COMP9444 19t3 Convolutional Networks 10 COMP9444 19t3

Convolutional Neural Networks



Assume the original image is $J \times K$, with L channels.

We apply an $M \times N$ "filter" to these inputs to compute one hidden unit in the convolution layer. In this example J = 6, K = 7, L = 3, M = 3, N = 3.

Convolution Operator

Continuous convolution

$$s(t) = (x*w)(t) = \int x(a)w(t-a)da$$

Discrete convolution

COMP9444

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

Two-dimensional convolution

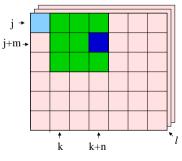
$$S(j,k) = (K*I)(j,k) = \sum_{m} \sum_{n} K(m,n)I(j+m,k+n)$$

Note: Theoreticians sometimes write I(j-m,k-n) so that the operator is commutative. But, computationally, it is easier to write it with a plus sign.

COMP9444 (© Alan Blair. 2017-19

COMP9444 19t3 Convolutional Networks

Convolutional Neural Networks

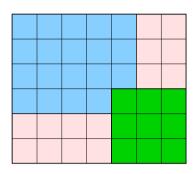


$$Z_{j,k}^{i} = g(b^{i} + \sum_{l} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} K_{l,m,n}^{i} V_{j+m,k+n}^{l})$$

The same weights are applied to the next $M \times N$ block of inputs, to compute the next hidden unit in the convolution layer ("weight sharing").

11

Convolutional Neural Networks



Convolutional Networks

If the original image size is $J \times K$ and the filter is size $M \times N$, the convolution layer will be $(J+1-M) \times (K+1-N)$

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Convolutional Networks

Example: LeNet

For example, in the first convolutional layer of LeNet (color images), J = K = 32, M = N = 5.

The width of the next layer is

$$J+1-M=32+1-5=28$$

Question: If there are 6 filters in this layer, compute the number of:

weights per neuron?

$$1+5\times5\times3$$

neurons?

$$28\times28\times6$$

$$= 4,704$$

connections?

$$28 \times 28 \times 6 \times 76 =$$

$$=357,504$$

independent parameters?

$$6 \times 76 = 456$$

Example: LeNet

For example, in the first convolutional layer of LeNet,

$$J = K = 32, M = N = 5.$$

The width of the next layer is

$$J+1-M=32+1-5=28$$

Convolutional Networks

Question: If there are 6 filters in this layer, compute the number of:

weights per neuron?

neurons?

connections?

independent parameters?

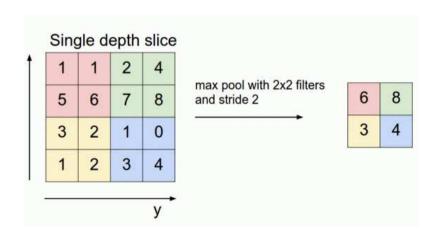
COMP9444 © Alan Blair, 2017-19

COMP9444 19t3

Convolutional Networks

15

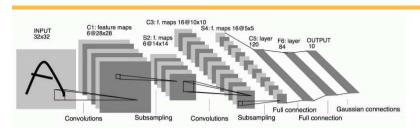
Max Pooling (9.3-9.4)



14

COMP9444 19t3 Convolutional Networks 16 COMP9444 19t3 Convolutional Networks 17

Example: LeNet trained on MNIST



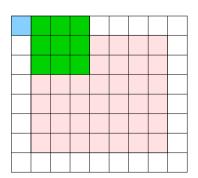
The 5×5 window of the first convolution layer extracts from the original 32×32 image a 28×28 array of features. Subsampling then halves this size to 14×14 . The second Convolution layer uses another 5×5 window to extract a 10×10 array of features, which the second subsampling layer reduces to 5×5 . These activations then pass through two fully connected layers into the 10 output units corresponding to the digits '0' to '9'.

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Convolutional Networks 18 COMP9444 19t3 Convolutional Networks 19

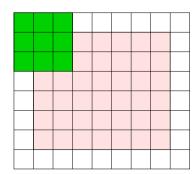
COMP9444

Convolution with Zero Padding



This is known as "Zero-Padding".

Convolution with Zero Padding

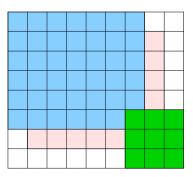


Sometimes, we treat the off-edge inputs as zero (or some other value).

COMP9444 © Alan Blair, 2017-19

Convolutional Networks

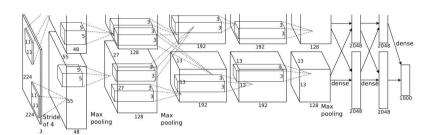
Convolution with Zero Padding



With Zero Padding, the convolution layer is the same size as the original image (or the previous layer).

23

Example: AlexNet (2012)



- 5 convolutional layers + 3 fully connected layers
- max pooling with overlapping stride
- softmax with 1000 classes
- 2 parallel GPUs which interact only at certain layers

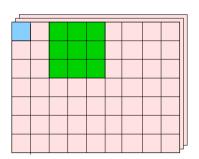
COMP9444

© Alan Blair, 2017-19

22

Stride

COMP9444 19t3

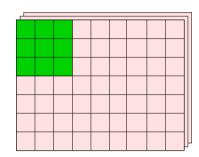


Convolutional Networks

$$Z_{j,k}^{i} = g(b^{i} + \sum_{l} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} K_{l,m,n}^{i} V_{j+m,k+n}^{l})$$

The same formula is used, but j and k are now incremented by s each time. The number of free parameters is $1 + L \times M \times N$

Stride (9.5)



Assume the original image is $J \times K$, with L channels.

We again apply an $M \times N$ filter, but this time with a "stride" of s > 1.

In this example J = 7, K = 9, L = 3, M = 3, N = 3, s = 2.

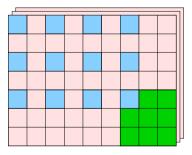
COMP9444 © Alan Blair, 2017-19

COMP9444 19t3

Convolutional Networks

ional Networks

Stride Dimensions

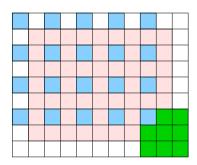


j takes on the values $0, s, 2s, \dots, (J-M)$

k takes on the values $0, s, 2s, \dots, (K - N)$

The next layer is (1 + (J - M)/s) by (1 + (K - N)/s)

Stride with Zero Padding



When combined with zero padding of width P,

j takes on the values $0, s, 2s, \dots, (J+2P-M)$

k takes on the values $0, s, 2s, \dots, (K+2P-N)$

The next layer is (1 + (J + 2P - M)/s) by (1 + (K + 2P - N)/s)

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Convolutional Networks 26

Example: AlexNet Conv Layer 1

For example, in the first convolutional layer of AlexNet,

$$J = K = 224, P = 2, M = N = 11, s = 4.$$

The width of the next layer is

$$1 + (J - M)/s = 1 + (224 + 2 \times 2 - 11)/4 = 55$$

Question: If there are 96 filters in this layer, compute the number of:

weights per neuron?
$$1 + 11 \times 11 \times 3 = 364$$

neurons? $55 \times 55 \times 96 = 290,400$
connections? $55 \times 55 \times 96 \times 364 = 105,705,600$
independent parameters? $96 \times 364 = 34,944$

Example: AlexNet Conv Layer 1

For example, in the first convolutional layer of AlexNet,

$$J = K = 224, P = 2, M = N = 11, s = 4.$$

The width of the next layer is

$$1 + (J + 2P - M)/s = 1 + (224 + 2 \times 2 - 11)/4 = 55$$

Question: If there are 96 filters in this layer, compute the number of:

weights per neuron?

neurons?

connections?

independent parameters?

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Convolutional Networks

Overlapping Pooling

If the previous layer is $J \times K$, and max pooling is applied with width F and stride s, the size of the next layer will be

$$(1+(J-F)/s) \times (1+(K-F)/s)$$

Question: If max pooling with width 3 and stride 2 is applied to the features of size 55×55 in the first convolutional layer of AlexNet, what is the size of the next layer?

Answer:

Question: How many independent parameters does this add to the model?

Answer:

27

COMP9444 19t3 Convolutional Networks 28 COMP9444 19t3 Convolutional Networks 29

Overlapping Pooling

If the previous layer is $J \times K$, and max pooling is applied with width F and stride s, the size of the next layer will be

$$(1+(J-F)/s) \times (1+(K-F)/s)$$

Question: If max pooling with width 3 and stride 2 is applied to the features of size 55×55 in the first convolutional layer of AlexNet, what is the size of the next layer?

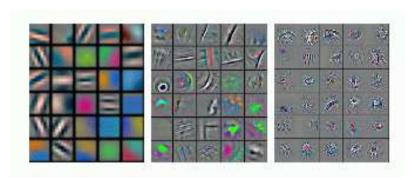
Answer: 1 + (55 - 3)/2 = 27.

Question: How many independent parameters does this add to the model?

Answer: None! (no weights to be learned, just computing max)

COMP9444 © Alan Blair, 2017-19

Convolutional Filters



First Layer

Second Layer

Third Layer

COMP9444 © Alan Blair, 2017-19