COMP9444 Neural Networks and Deep Learning 10a. Generative Adversarial Networks

Textbook, Chapter 14

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Autoencoders 2 COMP9444 19t3 Autoencoders

Artist-Critic Co-Evolution

Real Images

- Critic is rewarded for distinguishing real images from those generated by the artist.
- Artist is rewarded for fooling the critic into thinking that generated images are real.

COMP9444 19t3 Autoencoders

Outline

- Artist-Critic Co-Evolution
- Co-Evolution Paradigms
- Interactive Evolution (GP Artist, Human Critic)
- Evolutonary Art (GP Artist, GP or NN Critic)
- Generative Adversarial Networks (CNN Artist, CNN Critic)

COMP9444 © Alan Blair, 2017-19

3

Co-Evolution Paradigms

Artist	Critic	Method	Reference	
Biomorph	Human	Blind Watchmaker	(Dawkins, 1986)	
GP	Human	Interactive Evolution	(Sims, 1991)	
CPPN	Human	PicBreeder	(Secretan, 2011)	
CA	Human	EvoEco	(Kowaliw, 2012)	
GP	SOM	Artificial Creativity	(Saunders, 2001)	
GP	NN	Computational Aesthetics	(Machado, 2008)	
Agents	NN	Evolutionary Art	(Greenfield, 2009)	
GP	NN	Aesthetic Learning	(Li & Hu, 2010)	
HERCL	HERCL	Co-Evolving Line Drawings	(Vickers, 2017)	
HERCL	DCNN	HERCL Function/CNN	(Soderlund, 2018)	
DCNN	DCNN	Generative Adversarial Nets	(Goodfellow, 2014)	
DCNN	DCNN	Plug & Play Generative Nets	(Nguyen, 2016)	

COMP9444 ©Alan Blair, 2017-19 COMP9444 ©Alan Blair, 2017-19

COMP9444 19t3 Autoencoders 4 COMP9444 19t3 Autoencoders 5

Blind Watchmaker (Dawkins, 1986)

# File Edit	-15 -10 Drift Engir Hope	deering ful Monster alize Fossil Reco Back Fassils rding Fassils	1 Bilat Sing	
##		##	_ ****	**
**	;	* # *	##	###

- the Human is presented with 15 images
- the chosen image(s) are used to breed the next generation

COMP9444 (C) Alan Blair, 2017-19

COMP9444 19t3 Autoencoders 6 COMP9444 19t3 Autoencoders

Interactive Evolution (Sims, 1991)

- Artist = Genetic Program (GP)
 - \triangleright used as function to compute R,G,B values for each pixel x, y
- Critic = Human

Blind Watchmaker Biomorphs

PicBreeder Examples

COMP9444

COMP9444

© Alan Blair, 2017-19

7

COMP9444 19t3 Autoencoders 8 COMP9444 19t3 Autoencoders 9

PicBreeder (Secretan, 2011)

- Artist = Convolutional Pattern Producing Neural Network (CPPN)
- Interactive Web site (picbreeder.org) where you can choose existing individual and use it for further breeding
- Interactive Evolution is cool, but it may require a lot of work from the Human Can the Human be replaced by an automated Critic?

COMP9444 (© Alan Blair, 2017-19

Autoencoders

10 COMP9444 19t3 Autoencoders 11

Recall: Variational Autoencoder

Computational Aesthetics (Machado, 2008)

- Generator = Genetic Program
- Critic = 2-layer NN, using statistical features of image

COMP9444 (C) Alan Blair, 2017-19

Variational Autoencoder Faces

COMP9444 19t3

Generative Adversarial Networks

Discriminator tries to assign a high number to real images (x) and a low number to "fake" images (\tilde{x}) produced by the Generator

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Autoencoders 14 COMP9444 19t3 Autoencoders 15

Generative Adversarial Networks

Generator (Artist) G_{θ} and Discriminator (Critic) D_{ψ} are both Deep Convolutional Neural Networks.

Generator $G_{\theta}: z \mapsto x$, with parameters θ , generates an image x from latent variables z (sampled from a standard Normal distribution).

Discriminator $D_{\Psi}: x \mapsto D_{\Psi}(x) \in (0,1)$, with parameters Ψ , takes an image x and estimates the probability of the image being real.

Generator and Discriminator play a 2-player zero-sum game to compute:

$$\min_{\theta} \max_{\Psi} \left(\mathbf{E}_{x \sim p_{\text{data}}} \left[\log D_{\Psi}(x) \right] + \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\Psi}(G_{\theta}(z)) \right) \right] \right)$$

Discriminator tries to maximize the bracketed expression, Generator tries to minimize it.

GAN Generated Images

COMP9444 © Alan Blair, 2017-19

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

$$\max_{\mathbf{\Psi}} \left(\mathbf{E}_{x \sim p_{\text{data}}} \left[\log D_{\mathbf{\Psi}}(x) \right] + \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\mathbf{\Psi}}(G_{\mathbf{\theta}}(z)) \right) \right] \right)$$

Gradient descent on Generator, using:

$$\min_{\theta} \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\Psi}(G_{\theta}(z)) \right) \right]$$

16

19

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

$$\max_{\Psi} \left(\mathbf{E}_{x \sim p_{\text{data}}} \left[\log D_{\Psi}(x) \right] + \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(1 - D_{\Psi}(G_{\theta}(z)) \right) \right] \right)$$

Autoencoders

Gradient descent on Generator, using:

$$-\min_{m{ heta}} \mathbf{E}_{z \sim p_{\mathrm{model}}} igl[\log igl(1 - D_{m{\Psi}}(G_{m{ heta}}(z)) igr) igr]$$

 $\frac{\min\limits_{\theta} \mathbf{E}_{z\sim p_{model}} \left[\log \left(1 - D_{\Psi}(G_{\theta}(z)) \right) \right]}{\text{This formula puts too much emphasis on images that are correctly}}$ classified. Better to do gradient ascent on Generator, using:

$$\max_{\theta} \mathbf{E}_{z \sim p_{\text{model}}} \left[\log \left(D_{\Psi}(G_{\theta}(z)) \right) \right]$$

This puts more emphasis on the images that are wrongly classified.

COMP9444 © Alan Blair, 2017-19

18 COMP9444 19t3 Autoencoders

Generative Adversarial Networks

repeat:

for k steps do

sample minibatch of m latent samples $\{z^{(1)}, \dots, z^{(m)}\}\$ from p(z)sample minibatch of *m* training items $\{x^{(1)}, \dots, x^{(m)}\}\$

update Discriminator by gradient ascent on ψ :

$$\nabla_{\boldsymbol{\Psi}} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\boldsymbol{\Psi}}(\boldsymbol{x}^{(i)}) + \log \left(1 - D_{\boldsymbol{\Psi}}(G_{\boldsymbol{\theta}}(\boldsymbol{z}^{(i)})) \right) \right]$$

end for

sample minibatch of m latent samples $\{z^{(1)}, \dots, z^{(m)}\}\$ from p(z)update Generator by gradient ascent on θ :

$$\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\Psi}(G_{\theta}(z^{(i)})))$$

end repeat

COMP9444

Generative Adversarial Networks

GAN properties:

- \blacksquare one network aims to produces the full range of images x, with different values for the latent variables z
- differentials are backpropagated through the Discriminator network and into the Generator network
- compared to previous approaches, the images produced are much more realistic!

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Autoencoders

GAN Convolutional Architectures

- \blacksquare normalize images to between -1 and +1
- replace pooling layers with:
 - strided convolutions (Discriminator)
 - ▶ fractional-strided convolutions (Generator)
- use BatchNorm in both Generator and Discriminator
- remove fully connected hidden layers for deeper architectures
- use tanh at output layer of Generator, ReLU activation in all other layers
- use LeakyReLU activation for all layers of Discriminator

Generator Architecture

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (Radford et al., 2016)

COMP9444 (© Alan Blair, 2017-19

GAN Image Vector Arithmetic

COMP9444 © Alan Blair, 2017-19

COMP9444 19t3 Autoencoders 22 COMP9444 19t3 Autoencoders 23

GAN Image Vector Arithmetic

Oscillation and Mode Collapse

- Like any coevolution, GANs can sometimes oscillate or get stuck in a mediocre stable state.
- oscillation: GAN trains for a long time, generating a variety of images, but quality fails to improve (compare IPD)
- mode collapse: Generator produces only a small subset of the desired range of images, or converges to a single image (with minor variations)

Methods for avoiding mode collapse:

- Conditioning Augmentation
- Minibatch Features (Fitness Sharing)
- Unrolled GANs

COMP9444 19t3 Autoencoders 24 COMP9444 19t3 Autoencoders 25

The GAN Zoo

- Contex-Encoder for Image Inpainting
- Texture Synthesis with Patch-based GAN
- Conditional GAN
- Text-to-Image Synthesis
- StackGAN
- Patch-based Discriminator
- S²-GAN
- Style-GAN
- Plug-and-Play Generative Networks

COMP9444 © Alan Blair, 2017-19

Computer-Generated Art (pickartso.com)

© Alan Blair, 2017-19

COMP9444 19t3 26 COMP9444 19t3 27 Autoencoders Autoencoders

COMP9444

COMP9444

Attribute Swapping

Attribute Swapping with Autoencoders

COMP9444 19t3 Autoencoders 28 COMP9444 19t3 Autoencoders 29

Bi-GAN

Discriminator tries to assign a high number to the combination (z,x) and a low number to the combination (\tilde{z},\tilde{x})

COMP9444 © Alan Blair, 2017-19

References

http://dl.ee.cuhk.edu.hk/slides/gan.pdf

cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf

https://arxiv.org/abs/1612.00005

https://pickartso.com

COMP9444 ©Alan Blair, 2017-19