
COMP9444 19t3 Review 2

Assessment

Assessment will consist of:

Assignment 1 16%

Assignment 2 24%

Written Exam 60%

In order to pass the course, you must score

� at least 16/40 for the assignments

� at least 24/60 for the written exam

� a combined mark of at least 50/100
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McCulloch & Pitts Model of a Single Neuron
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s = w1x1 +w2x2−th

= w1x1 +w2x2 +w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function
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Revised Schedule

Week 1: Neuroanatomy and Perceptrons (1.2, 9.10)

Week 2: Backpropagation, Probability, Variations (4.3, 5.1-5, 6.1-5)

Week 3: Hidden Units, Convolutional Networks (7.9,7.11-12, 8.2-3, 9.1-5)

Week 4: — (Labour Day Holiday)

Week 5: Image Processing (7.4, 8.4, 8.7.1)

Week 6: Recurrent Networks, LSTM and GRU (10.2, 10.7, 10.10)

Week 7: Language Processing (10.4, 12.4)

Week 8: Deep Reinforcement Learning (12.5.1.1, 18.1, 20.9)

Week 9: Hopfield Network & Boltzmann Machine (16.7, 17.4, 18.2, 20.1-4)

Week 9: Autoencoders (14.1-5, 20.10.3)

Week 10: Generative Adversarial Networks (20.10.4)
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Multi-Layer Neural Networks
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Problem: How can we train it to learn a new function? (credit assignment)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Review 4

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 +w2x2 +w0

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0 +η

so s ← s+η(1+∑
k

x2
k )

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k )

otherwise, weights are unchanged. (η > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,

as long as they are linearly separable.
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Types of Learning

� Supervised Learning

◮ agent is presented with examples of inputs and their target outputs

� Reinforcement Learning

◮ agent is not presented with target outputs, but is given a reward

signal, which it aims to maximize

� Unsupervised Learning

◮ agent is only presented with the inputs themselves, and aims to

find structure in these inputs
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Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.
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Local Search in Weight Space

Problem: because of the step function, the landscape will not be

smooth but will instead consist almost entirely of flat local regions and

“shoulders”, with occasional discontinuous jumps.
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Ockham’s Razor

“The most likely hypothesis is the simplest one consistent with the data.”
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inadequate good compromise over-fitting

Since there can be noise in the measurements, in practice need to make a

tradeoff between simplicity of the hypothesis and how well it fits the data.
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Key Idea

(a) Step function (b) Sign function

+1

ai

−1

ini

+1

ai

init

(c) Sigmoid function

+1

ai

ini

Replace the (discontinuous) step function with a differentiable function,

such as the sigmoid:

g(s) =
1

1+ e−s

or hyperbolic tangent

g(s) = tanh(s) =
es− e−s

es + e−s
= 2

( 1

1+ e−2s

)

−1
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Two-Layer Neural Network

Input units

Hidden units

Output units ai

Wj,i

aj

Wk,j

ak

Normally, the numbers of input and output units are fixed,

but we can choose the number of hidden units.
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Cross Entropy

For classification tasks, target t is either 0 or 1, so better to use

E =− t log(z)− (1− t) log(1− z)

This can be justified mathematically, and works well in practice –

especially when negative examples vastly outweigh positive ones.

It also makes the backprop computations simpler

∂E

∂z
=

z− t

z(1− z)

if z =
1

1+ e−s
,

∂E

∂s
=

∂E

∂z

∂z

∂s
= z− t
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Gradient Descent (4.3)

Recall that the error function E is (half) the sum over all input patterns

of the square of the difference between actual output and desired output

E =
1

2
∑(z− t)2

The aim is to find a set of weights for which E is very low.

If the functions involved are smooth, we can use multi-variable calculus

to adjust the weights in such a way as to take us in the steepest downhill

direction.

w← w−η
∂E

∂w

Parameter η is called the learning rate.
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Bayes’ Rule (3.11)

The formula for conditional probability can be manipulated to find a

relationship when the two variables are swapped:

P(a∧b) = P(a |b)P(b) = P(b |a)P(a)

→ Bayes’ rule P(a |b) = P(b |a)P(a)
P(b)

This is often useful for assessing the probability of an underlying cause

after an effect has been observed:

P(Cause|Effect) =
P(Effect|Cause)P(Cause)

P(Effect)
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Variations on Backprop

� Cross Entropy

◮ problem: least squares error function unsuitable for classification,

where target = 0 or 1

◮ mathematical theory: maximum likelihood

◮ solution: replace with cross entropy error function

� Weight Decay

◮ problem: weights “blow up”, and inhibit further learning

◮ mathematical theory: Bayes’ rule

◮ solution: add weight decay term to error function

� Momentum

◮ problem: weights oscillate in a “rain gutter”

◮ solution: weighted average of gradient over time
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Momentum (8.3)

If landscape is shaped like a “rain gutter”, weights will tend to oscillate

without much improvement.

Solution: add a momentum factor

δw ← α δw − η
∂E

∂w

w ← w + δw

Hopefully, this will dampen sideways oscillations but amplify downhill

motion by 1
1−α .
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Bayesian Inference

H is a class of hypotheses

P(D |h) = probability of data D being generated under hypothesis h ∈ H.

P(h |D) = probability that h is correct, given that data D were observed.

Bayes’ Theorem:

P(h |D)P(D) = P(D |h)P(h)

P(h |D) =
P(D |h)P(h)

P(D)

P(h) is called the prior.
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Dropout (7.12)

Nodes are randomly chosen to not be used, with some fixed probability

(usually, one half).
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Weight Decay (5.2.2)

Sometimes we add a penalty term to the loss function which encourages

the neural network weights w j to remain small:

E =
1

2
∑

i

(zi− ti)
2 +

λ

2
∑

j

w2
j

This can prevent the weights from “saturating” to very high values.

It is sometimes referred to as “elastic weights” because the weights

experience a force as if there were a spring pulling them back towards the

origin according to Hooke’s Law.

The scaling factor λ needs to be determined from experience, or

empirically.
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Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers is difficult.

When the weights are small, the differentials become smaller and smaller

as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will

saturate to extreme values. As a result, the gradients at those layers will

become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will

sometimes get multiplied many times is places where the transfer function

is steep, causing them to blow up to large values.
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Hinton Diagrams

� used to visualize higher dimensions

� white = positive, black = negative

Sharp
 Left

Sharp
Right

4 Hidden
   Units

30 Output
   Units

 30x32 Sensor
 Input Retina

Straight
 Ahead
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Activation Functions (6.3)
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Sigmoid Rectified Linear Unit (ReLU)
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Hyperbolic Tangent Scaled Exponential Linear Unit (SELU)
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Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.

−6 −4 −2 0 2 4 6

−6

−4

−2

0
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4

6

For example, this Twin Spirals problem cannot be learned with a 2-layer

network, but it can be learned using a 3-layer network if we include

shortcut connections between non-consecutive layers.
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Convolutional Network Components

� convolution layers: extract shift-invariant features from the previous

layer

� subsampling or pooling layers: combine the activations of multiple

units from the previous layer into one unit

� fully connected layers: collect spatially diffuse information

� output layer: choose between classes
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Weight Initialization

In order to have healthy forward and backward propagation, each term in

the product must be approximately equal to 1. Any deviation from this

could cause the activations to either vanish or saturate, and the differentials

to either decay or explode exponentially.

Var[z]≃
( D

∏
i=1

G0 nin
i Var[w(i)]

)

Var[x]

Var[
∂

∂x
]≃

( D

∏
i=1

G1 nout
i Var[w(i)]

)

Var[
∂

∂z
]

We therefore choose the initial weights {w(i)
jk } in each layer (i) such that

G1nout
i Var[w(i)] = 1
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Convolutional Neural Networks

j+m

l

j

k k+n

Z i
j,k = g

(

bi +∑
l

∑
M−1

m=0 ∑
N−1

n=0
K i

l,m,nV l
j+m,k+n

)

The same weights are applied to the next M×N block of inputs, to

compute the next hidden unit in the convolution layer (“weight sharing”).
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Batch Normalization

We can normalize the activations x
(i)
k of node k in layer (i) relative to the

mean and variance of those activations, calculated over a mini-batch of

training items:

x̂
(i)
k =

x
(i)
k −Mean[x

(i)
k ]

√

Var[x
(i)
k ]

These activations can then be shifted and re-scaled to

y
(i)
k = β

(i)
k + γ

(i)
k x̂

(i)
k

β
(i)
k ,γ

(i)
k are additional parameters, for each node, which are trained by

backpropagation along with the other parameters (weights) in the network.

After training is complete, Mean[x
(i)
k ] and Var[x

(i)
k ] are either pre-computed

on the entire training set, or updated using running averages.
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Residual Networks

Idea: Take any two consecutive stacked layers in a deep network and add a

“skip” connection which bipasses these layers and is added to their output.
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Stride with Zero Padding

When combined with zero padding of width P,

j takes on the values 0,s,2s, . . . ,(J+2P−M)

k takes on the values 0,s,2s, . . . ,(K +2P−N)

The next layer is (1+(J+2P−M)/s) by (1+(K+2P−N)/s)
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Dense Networks

Recently, good results have been achieved using networks with densely

connected blocks, within which each layer is connected by shortcut

connections to all the preceding layers.
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Convolutional Filters

First Layer Second Layer Third Layer
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Simple Recurrent Network (Elman, 1990)

� at each time step, hidden layer activations are copied to “context” layer

� hidden layer receives connections from input and context layers

� the inputs are fed one at a time to the network, it uses the context layer

to “remember” whatever information is required for it to produce the

correct output
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Recurrent Networks

� Processing Temporal Sequences

� Sliding Window

� Recurrent Network Architectures

� Hidden Unit Dynamics

� Long Short Term Memory
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Back Propagation Through Time

� we can “unroll” a recurrent architecture into an equivalent feedforward

architecture, with shared weights

� applying backpropagation to the unrolled architecture is reffered to as

“backpropagation through time”

� we can backpropagate just one timestep, or a fixed number of

timesteps, or all the way back to beginning of the sequence
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Sliding Window

The simplest way to feed temporal input to a neural network is the

“sliding window” approach, first used in the NetTalk system

(Sejnowski & Rosenberg, 1987).
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Long Short Term Memory
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Oscillating Solution for anbn
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Gated Recurrent Unit

GRU is similar to LSTM but has only two gates instead of three.
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Long Range Dependencies

� Simple Recurrent Networks (SRNs) can learn medium-range

dependencies but have difficulty learning long range dependencies

� Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)

can learn long range dependencies better than SRN
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Singular Value Decomposition

Co-occurrence matrix X can be decomposed as X = USVT where U, V

are unitary (all columns have unit length) and S is diagonal.

L
=

r
u
u2

1

X U V

r
s

1s2

r

v v1 2 r

S T

s
ukL

M M

Columns 1 to n of row k of U then provide an n-dimensional vector

representing the kth word in the vocabulary.

SVD is computationally expensive, proportional to L×M2 if L≥M.

Can we do something similar with less computation, and incrementally?
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Co-occurrence Matrix (2-word window)
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a 1 1 6 1 1 1 1 1 1
all 1 1
and 1 1 1 1
bought 1 1
cat 1 1
caught 1 1
crooked 6 1 1 1 1 1 1 1 1
found 1 1
he 1 1
house 1
in 1 1
little 1 1
lived 1 1
man 1 1
mile 1 1
mouse 1 1
sixpence 1 1
stile 1 1
there 1
they 1 1
together 1 1
upon 1 1
walked 1 1
was 1 1
who 1 1 1 1
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Continuous Bag Of Words

� If several context words are each

used independently to predict the

center word, the hidden activation

becomes a sum (or average) over all

the context words

� Note the difference between

this and NetTalk – in word2vec

(CBOW) all context words share

the same input-to-hidden weights
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Word Embeddings
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Negative Sampling

The idea of negative sampling is that we train the network to increase

its estimation of the target word j∗ and reduce its estimate not of all the

words in the vocabulary but just a subset of them Wneg, drawn from an

appropriate distribution.

E =− logσ(v′j∗
T

h) − ∑
j∈Wneg

logσ(−v′j
T

h)

This is a simplified version of Noise Constrastive Estimation (NCE).

It is not guaranteed to produce a well-defined probability distribution,

but in practice it does produce high-quality word embeddings.
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word2vec Skip-Gram Model

� try to predict the context words,

given the center word

� this skip-gram model is similar to

CBOW, except that in this case a

single input word is used to predict

multiple context words

� all context words share the same

hidden-to-output weights
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Word Vector Arithmetic
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Hierarchical Softmax

[[n′ = child(n)]] =







+1, if n′ is left child of node n,

−1, otherwise.

σ(u) = 1/(1− exp(−u))

prob(w = wt) =
L(w)−1

∏
j=1

σ([[n(w, j+1) = child(n(w, j))]]v′n(w, j)
T

h)
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Reinforcement Learning Framework

� An agent interacts with its environment.

� There is a set S of states and a set A of actions.

� At each time step t, the agent is in some state st .

It must choose an action at , whereupon it goes into state

st+1 = δ(st ,at) and receives reward rt = R (st ,at)

� Agent has a policy π : S → A . We aim to find an optimal policy π∗

which maximizes the cumulative reward.

� In general, δ, R and π can be multi-valued, with a random element,

in which case we write them as probability distributions

δ(st+1 = s |st ,at) R (rt = r |st ,at) π(at = a |st)
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Bidirectional Recurrent Encoder
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Models of optimality

Is a fast nickel worth a slow dime?

Finite horizon reward
h−1

∑
i=0

rt+i

Infinite discounted reward
∞

∑
i=0

γ irt+i, 0≤ γ < 1

Average reward lim
h→∞

1
h

h−1

∑
i=0

rt+i

� Finite horizon reward is simple computationally

� Infinite discounted reward is easier for proving theorems

� Average reward is hard to deal with, because can’t sensibly choose

between small reward soon and large reward very far in the future.
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Attention Mechanism
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Temporal Difference Learning

Let’s first assume that R and δ are deterministic. Then the (true) value

V ∗(s) of the current state s should be equal to the immediate reward plus

the discounted value of the next state

V ∗(s) = R (s,a)+ γV ∗(δ(s,a))

We can turn this into an update rule for the estimated value, i.e.

V (st)← rt + γV (st+1)

If R and δ are stochastic (multi-valued), it is not safe to simply replace

V (s) with the expression on the right hand side. Instead, we move its value

fractionally in this direction, proportional to a learning rate η

V (st)←V (st)+η [rt + γV (st+1)−V (st) ]
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RL Approaches

� Value Function Learning

◮ TD-Learning

◮ Q-Learning

� Policy Learning

◮ Hill Climbing

◮ Policy Gradients

◮ Evolutionary Strategy

� Actor-Critic

◮ combination of Value and Policy learning
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Q-Learning

For a deterministic environment, π∗, Q∗ and V ∗ are related by

π∗(s) = argmaxa Q∗(s,a)

Q∗(s,a) = R (s,a)+ γV ∗(δ(s,a))

V ∗(s) = max
b

Q∗(s,b)
So

Q∗(s,a) = R (s,a)+ γ max
b

Q∗(δ(s,a),b)

This allows us to iteratively approximate Q by

Q(st ,at)← rt + γ max
b

Q(st+1,b)

If the environment is stochastic, we instead write

Q(st ,at)← Q(st ,at)+η [rt + γ max
b

Q(st+1,b)−Q(st ,at)]
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Exploration / Exploitation Tradeoff

Most of the time we should choose what we think is the best action.

However, in order to ensure convergence to the optimal strategy, we must

occasionally choose something different from our preferred action, e.g.

� choose a random action 5% of the time, or

� use Softmax (Boltzmann distribution) to choose the next action:

P(a) =
eR (a))/T

∑
b∈A

eR (b))/T
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Deep Q-Network
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Policy Gradients

If rtotal = +1 for a win and −1 for a loss, we can simply multiply the log

probability by rtotal. Differentials can be calculated using the gradient

∇θ rtotal

m

∑
t=1

logπθ(at |st) = rtotal

m

∑
t=1

∇θ logπθ(at |st)

The gradient of the log probability can be calculated nicely using Softmax.

If rtotal takes some other range of values, we can replace it with (rtotal−b)

where b is a fixed value, called the baseline.
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Deep Q-Learning with Experience Replay

� choose actions using current Q function (ε-greedy)

� build a database of experiences (st ,at ,rt ,st+1)

� sample asynchronously from database and apply update, to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

� removes temporal correlations by sampling from variety of game

situations in random order

� makes it easier to parallelize the algorithm on multiple GPUs
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REINFORCE Algorithm

We then get the following REINFORCE algorithm:

for each trial

run trial and collect states st , actions at , and reward rtotal

for t = 1 to length(trial)

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

end

end

This algorithm has successfully been applied, for example, to learn to play

the game of Pong from raw image pixels.
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Asynchronous Advantage Actor Critic

� use policy network to choose actions

� learn a parameterized Value function Vu(s) by TD-Learning

� estimate Q-value by n-step sample

Q(st ,at) = rt+1 + γrt+2 + . . .+ γn−1rt+n + γnVu(st+n)

� update policy by

θ← θ+ηθ [Q(st ,at)−Vu(st)]∇θ logπθ(at |st)

� update Value function my minimizing

[Q(st ,at)−Vu(st)]
2
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Double Q-Learning

� if the same weights w are used to select actions and evaluate actions,

this can lead to a kind of confirmation bias

� could maintain two sets of weights w and w, with one used for

selection and the other for evaluation (then swap their roles)

� in the context of Deep Q-Learning, a simpler approach is to use the

current “online” version of w for selection, and an older “target”

version w for evaluation; we therefore minimize

[rt + γQw(st+1,argmaxb Qw(st+1,b))−Qw(st ,at)]
2

� a new version of w is periodically calculated from the distributed

values of w, and this w is broadcast to all processors.
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Hopfield Network

E(x) =−(1

2
∑
i, j

xi wi j x j +∑
i

bi xi)

Start with an initial state x and then repeatedly try to “flip” neuron

activations one at a time, in order to reach a lower-energy state. If we

choose to modify neuron xi, its new value should be

xi←















+1, if ∑ j wi j x j +bi > 0,

xi , if ∑ j wi j x j +bi = 0,

−1, if ∑ j wi j x j +bi < 0.

This ensures that the energy E(x) will never increase. It will eventually

reach a local minimum.
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Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted

from rtotal

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

In the actor-critic framework, rtotal is replaced by Q(st ,at)

θ← θ+ηθ Q(st ,at)∇θ logπθ(at |st)

We can also subtract a baseline from Q(st ,at). This baseline must be

independent of the action at , but it could be dependent on the state st .

A good choice of baseline is the value function Vu(s), in which case the

Q function is replaced by the advantage function

Aw(s,a) = Q(s,a)−Vu(s)
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Restricted Boltzmann Machine (16.7)

If we allow visible-to-visible and hidden-to-hidden connections, the

network takes too long to train. So we normally restrict the model by

allowing only visible-to-hidden connections.

This is known as a Restricted Boltzmann Machine.
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Boltzmann Machine (20.1)

The Boltzmann Machine uses exactly the same energy function as the

Hopfield network:

E(x) =−(∑
i< j

xi wi j x j +∑
i

bi xi)

The Boltzmann Machine is very similar to the Hopfield Network, except that

� components (neurons) xi take on the values 0,1 instead of −1,+1

� used to generate new states rather than retrieving stored states

� update is not deterministic but stochastic, using the sigmoid
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Restricted Boltzmann Machine

� inputs are binary vectors

� two-layer bi-directional neural network

◮ visible layer v

◮ hidden layer h

� no vis-to-vis or hidden-to-hidden connections

� all visible units connected to all hidden units

E(v,h) =−(∑
i

bi vi +∑
j

c j h j +∑
i, j

vi wi j h j)

� trained to maximize the expected log probability of the data
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Boltzmann Machine

The Boltzmann Machine operates similarly to a Hopfield Network, except

that there is some randomness in the neuron updates.

In both cases, we repeatedly choose one neuron xi and decide whether or

not to “flip” the value of xi, thus changing from state x into x′.

For the Hopfield Network, we do not change from x to x′ unless ∆E ≤ 0,

i.e. we never move to a higher energy state. For the Boltzmann machine,

we instead choose xi = 1 with probability

p =
1

1+ e−∆E/T

In other words, there is some probability of moving to a higher energy

state (or remaining in a higher energy state when a lower one is available).
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Autoencoder Networks

� output is trained to reproduce the input as closely as possible

� activations normally pass through a bottleneck, so the network is

forced to compress the data in some way

� like the RBM, Autoencoders can be used to automatically extract

abstract features from the input

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Review 68

Alternating Gibbs Sampling

With the Restricted Boltzmann Machine, we can sample from the

Boltzmann distribution as follows:

choose v0 randomly

then sample h0 from p(h |v0)

then sample v1 from p(v |h0)

then sample h1 from p(h |v1)

etc.
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Regularized Autoencoders (14.2)

� sparse autoencoders

� autoencoders with dropout at hidden layer(s)

� contractive autoencoders

� denoising autoencoders
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Quick Contrastive Divergence

It was noticed in the early 2000’s that the process can be sped up by taking

just one additional sample instead of running for many iterations.

� v0,h0 are used as positive sample, and v1,h1 as negative sample

� this can be compared to the Negative Sampling that was used with

word2vec – it is not guaranteed to approximate the true gradient, but

it works well in practice
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Entropy and KL-Divergence

� The entropy of a distribution q() is H(q) =
∫

θ
q(θ)(− logq(θ))dθ

� In Information Theory, H(q) is the amount of information (bits)

required to transmit a random sample from distribution q()

� For a Gaussian distribution, H(q) = ∑
i

log σi

� KL-Divergence DKL(q || p) =
∫

θ
q(θ)(log q(θ)− log p(θ))dθ

� DKL(q || p) is the number of extra bits we need to trasmit if we

designed a code for p() but the samples are drawn from q() instead.

� If p(z) is Standard Normal distribution, minimizing DKL

(

qφ(z)||p(z)
)

encourages qφ() to center on zero and spread out to approximate p().

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Review 72

Generative Models

� Sometimes, as well as reproducing the training items {x(i)}, we also

want to be able to use the decoder to generate new items which are of

a similar “style” to the training items.

� In other words, we want to be able to choose latent variables z from

a standard Normal distribution p(z), feed these values of z to the

decoder, and have it produce a new item x which is somehow similar

to the training items.

� Generative models can be:

◮ explicit (Variational Autoencoders)

◮ implicit (Generative Adversarial Networks)
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Variational Autoencoder (20.10.3)

Instead of producing a single z for each x(i), the encoder (with parameters φ)

can be made to produce a mean µ
z|x(i) and standard deviation σ

z|x(i)

This defines a conditional (Gaussian) probability distribution qφ(z|x(i))
We then train the system to maximize

E
z∼qφ(z|x(i))[ log pθ(x

(i)|z) ] − DKL

(

qφ(z|x(i))||p(z)
)

� the first term enforces that any sample z drawn from the conditional

distribution qφ(z|x(i)) should, when fed to the decoder, produce

somthing approximating x(i)

� the second term encourages qφ(z|x(i)) to approximate p(z)

� in practice, the distributions qφ(z|x(i)) for various x(i) will occupy

complementary regions within the overall distribution p(z)

COMP9444 c©Alan Blair, 2017-19

COMP9444 19t3 Review 73

Gaussian Distribution (3.9.3)

Pµ,σ(x) =
1√
2πσ

e−(x−µ)2/2σ2

0
µ = mean

σ = standard deviation

Multivariate Gaussian: Pµ,σ(x) = ∏
i

Pµi,σi
(xi)

COMP9444 c©Alan Blair, 2017-19



COMP9444 19t3 Review 78

Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:

max
ψ

(

Ex∼pdata

[

logDψ(x)
]

+Ez∼pmodel

[

log
(

1−Dψ(Gθ(z))
)]

)

Gradient descent on Generator, using:

min
θ

Ez∼pmodel

[

log
(

1−Dψ(Gθ(z))
)]

This formula puts too much emphasis on images that are correctly

classified. Better to do gradient ascent on Generator, using:

max
θ

Ez∼pmodel

[

log
(

Dψ(Gθ(z))
)]

This puts more emphasis on the images that are wrongly classified.
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Variational Autoencoder Digits
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Generative Adversarial Networks

repeat:

for k steps do

sample minibatch of m latent samples {z(1), . . . ,z(m)} from p(z)

sample minibatch of m training items {x(1), . . . ,x(m)}
update Discriminator by gradient ascent on ψ:

∇ψ
1

m

m

∑
i=1

[

logDψ(x
(i))+ log

(

1−Dψ(Gθ(z
(i)))

)]

end for

sample minibatch of m latent samples {z(1), . . . ,z(m)} from p(z)

update Generator by gradient ascent on θ:

∇θ
1

m

m

∑
i=1

log
(

Dψ(Gθ(z
(i)))

)

end repeat
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Generative Adversarial Networks

Generator (Artist) Gθ and Discriminator (Critic) Dψ are both

Deep Convolutional Neural Networks.

Generator Gθ : z 7→ x, with parameters θ, generates an image x from latent

variables z (sampled from a Normal distribution).

Discriminator Dψ : x 7→Dψ(x) ∈ (0,1), with parameters ψ, takes an image

x and estimates the probability of the image being real.

Generator and Discriminator play a 2-player zero-sum game to compute:

min
θ

max
ψ

(

Ex∼pdata

[

logDψ(x)
]

+Ez∼pmodel

[

log
(

1−Dψ(Gθ(z))
)]

)

Discriminator tries to maximize the bracketed expression,

Generator tries to minimize it.
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Sample 1-mark Question

Which of these architectures would have the best chance of learning long

range dependencies?

(a) Feedforward network with sliding window

(b) Simple Recurrent Network

(c) Elman Network

(d) Long Short Term Memory
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GAN Generated Images
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Sample 2-mark Question

One bag contains 2 red balls and 3 white balls. Another bag contains 3 red

balls and 2 green balls. One of these bags is chosen at random, and two

balls are drawn randomly from that bag, without replacement. Both of the

balls turn out to be red. What is the probability that the first bag is the one

that was chosen?

(a) 1/4

(b) 1/3

(c) 1/2

(d) 2/3
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Final Exam

� similar to Quizzes and Exercises, but in Multiple Choice format

� Questions 1-22 one mark each, Questaions 23-32 two marks each

� for each question, choose the ONE BEST Answer

� no marks taken off for wrong answers

� all sections covered in roughly equal proportion

� quick questions are at the beginning; longer questions at the end
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Neural Networks and Deep Learning

GOOD LUCK!
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UNSW myExperience Survey

Please remember to fill in the UNSW myExperience Survey.
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Neural Networks and Deep Learning

QUESTIONS?
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