1b. NP-completeness
 COMP6741: Parameterized and Exact Computation

Serge Gaspers
School of Computer Science and Engineering, UNSW Sydney, Australia

19 T 3

Outline

(1) Overview
(2) Turing Machines, P, and NP
(3) Reductions and NP-completeness
(4) NP-complete problems
(5) Further Reading

Outline

(1) Overview

(2) Turing Machines, P , and NP

(3) Reductions and NP-completeness

4 NP-complete problems
(5) Further Reading

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O\left(n^{c}\right)$, where n is the size of the input.

Polynomial time

Polynomial-time algorithm

Polynomial-time algorithm:
There exists a constant $c \in \mathbb{N}$ such that the algorithm has (worst-case) running-time $O\left(n^{c}\right)$, where n is the size of the input.

Example

Polynomial: $n ; n^{2} \log _{2} n ; n^{3} ; n^{20}$
Super-polynomial: $n^{\log _{2} n} ; 2^{\sqrt{n}} ; 1.001^{n} ; 2^{n} ; n$!

Tractable problems

Central Question

Which computational problems have polynomial-time algorithms?

Million-dollar question

Intriguing class of problems: NP-complete problems.

NP-complete problems

It is unknown whether NP-complete problems have polynomial-time algorithms.

- A polynomial-time algorithm for one NP-complete problem would imply polynomial-time algorithms for all problems in NP.

Gerhard Woeginger's P vs NP page:
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Polynomial vs. NP-complete

Polynomial

NP-complete

- Longest Path: Given a graph G and an integer k, does G have a simple path of length at least k ?
- Hamiltonian Cycle: Given a graph G, does G have a simple cycle that visits each vertex of G ?
- 3-CNF SAT: Given a propositional formula F in 3-CNF, is F satisfiable?
Example:
$(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z)$.
- Shortest Path: Given a graph G, two vertices a and b of G, and an integer k, does G have a simple $a-b$-path of length at most k ?
- Euler Tour: Given a graph G, does G have a cycle that traverses each edge of G exactly once?
- 2-CNF SAT: Given a propositional formula F in 2-CNF, is F satisfiable?
A k-CNF formula is a conjunction (AND) of clauses, and each clause is a disjunction (OR) of at most k literals, which are negated or unnegated Boolean variables.

Overview

What's next?

- Formally define P, NP, and NP-complete (NPC)
- (New) skill: show that a problem is NP-complete

Outline

(1) Overview
(2) Turing Machines, P , and NP

3 Reductions and NP-completeness

4 NP-complete problems

(5) Further Reading

Decision problems and Encodings

$<$ Name of Decision Problem $>$
Input: $\quad<$ What constitutes an instance $>$ Question: <Yes/No question>

Decision problems and Encodings

```
<Name of Decision Problem>
Input: <What constitutes an instance>
Question: <Yes/No question>
```

We want to know which decision problems can be solved in polynomial time polynomial in the size of the input n.

- Assume a "reasonable" encoding of the input
- Many encodings are polynomial-time equivalent; i.e., one encoding can be computed from another in polynomial time.
- Important exception: unary versus binary encoding of integers.
- An integer x takes $\left\lceil\log _{2} x\right\rceil$ bits in binary and $x=2^{\log _{2} x}$ bits in unary.

Formal-language framework

We can view decision problems as languages.

- Alphabet Σ : finite set of symbols. W.I.o.g., $\Sigma=\{0,1\}$
- Language L over Σ : set of strings made with symbols from $\Sigma: L \subseteq \Sigma^{*}$
- Fix an encoding of instances of a decision problem Π into Σ
- Define the language $L_{\Pi} \subseteq \Sigma^{*}$ such that

$$
x \in L_{\Pi} \Leftrightarrow x \text { is a Yes-instance for } \Pi
$$

Non-deterministic Turing Machine (NTM)

- input word $x \in \Sigma^{*}$ placed on an infinite tape (memory)
- read-write head initially placed on the first symbol of x
- computation step: if the machine is in state s and reads a, it can move into state s^{\prime}, writing b, and moving the head into direction $D \in\{L, R\}$ if $\left((s, a),\left(s^{\prime}, b, D\right)\right) \in \delta$.

- Q : finite, non-empty set of states
- Γ : finite, non-empty set of tape symbols
- $\quad \in \Gamma$: blank symbol (the only symbol allowed to occur on the tape infinitely often)
- $\Sigma \subseteq \Gamma \backslash\{b\}$: set of input symbols
- $q_{0} \in Q$: start state
- $A \subseteq Q$: set of accepting (final) states
- $\delta \subseteq(Q \backslash A \times \Gamma) \times(Q \times \Gamma \times\{L, R\})$: transition relation, where L stands for a move to the left and R for a move to the right.

Accepted Language

Definition 1

A NTM accepts a word $x \in \Sigma^{*}$ if there exists a sequence of computation steps starting in the start state and ending in an accept state.

Definition 2

The language accepted by an NTM is the set of words it accepts.

Video

The LEGO Turing Machine
https://www.youtube.com/watch?v=cYw2ewo06c4

Accept and Decide in polynomial time

Definition 3

A language L is accepted in polynomial time by an NTM M if

- L is accepted by M, and
- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O\left(|x|^{k}\right)$ computation steps.

Definition 4

A language L is decided in polynomial time by an NTM M if

- there is a constant k such that for any word $x \in L$, the NTM M accepts x in $O\left(|x|^{k}\right)$ computation steps, and
- there is a constant k^{\prime} such that for any word $x \in \Sigma^{*} \backslash L$, on input x the NTM M halts in a non-accepting state $(Q \backslash A)$ in $O\left(|x|^{k^{\prime}}\right)$ computation steps.

Deterministic Turing Machine

Definition 5

A Deterministic Turing Machine (DTM) is a Non-deterministic Turing Machine where the transition relation contains at most one tuple $((s, a),(\cdot, \cdot, \cdot))$ for each $s \in Q \backslash A$ and $a \in \Gamma$.

The transition relation δ can be viewed as a function $\delta: Q \backslash A \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$.
\Rightarrow For a given input word $x \in \Sigma^{*}$, there is exactly one sequence of computation steps starting in the start state.

DTM equivalents

Many computational models are polynomial-time equivalent to DTMs:

- Random Access Machine (RAM, used for algorithms in the textbook)
- variants of Turing machines (multiple tapes, infinite only in one direction, ...)

P and NP

Definition 6 (P)

$\mathrm{P}=\left\{L \subseteq \Sigma^{*}\right.$: there is a DTM accepting L in polynomial time $\}$

Definition 7 (NP)

NP $=\left\{L \subseteq \Sigma^{*}\right.$: there is a NTM accepting L in polynomial time $\}$

Definition 8 (coNP)
 $\mathrm{coNP}=\left\{L \subseteq \Sigma^{*}: \Sigma^{*} \backslash L \in \mathrm{NP}\right\}$

coP?

Theorem 9

$\mathrm{P}=\left\{L \subseteq \Sigma^{*}\right.$: there is a DTM deciding L in polynomial time $\}$

coP?

Theorem 9

$\mathrm{P}=\left\{L \subseteq \Sigma^{*}\right.$: there is a DTM deciding L in polynomial time $\}$

Proof sketch.

Need to show:
if L is accepted by a DTM M in polynomial time, then there is a DTM that decides L in polynomial time.
Idea: design a DTM M^{\prime} that simulates M for $c \cdot n^{k}$ steps, where $c \cdot n^{k}$ is the running time of M.
(Note that this proof is nonconstructive: we might not know the running time of M.)

NP and certificates

Non-deterministic choices

A NTM for an NP-language L makes a polynomial number of non-deterministic choices on input $x \in L$.
We can encode these non-deterministic choices into a certificate c, which is a polynomial-length word.
Now, there exists a DTM, which, given x and c, verifies that $x \in L$ in polynomial time.

Thus, $L \in$ NP iff there is a DTM V and for each $x \in L$ there exists a polynomial-length certificate c such that $V(x, c)=1$, but $V(y, \cdot)=0$ for each $y \notin L$.

CNF-SAT is in NP

- A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha: \operatorname{var}(F) \rightarrow\{0,1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

CNF-SAT

Input: \quad CNF formula F
Question: Does F have a satisfying assignment?
Example: $(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z)$.

Lemma 10

CNF-SAT \in NP.

CNF-SAT is in NP

- A CNF formula is a propositional formula in conjunctive normal form: a conjunction (AND) of clauses; each clause is a disjunction (OR) of literals; each literal is a negated or unnegated Boolean variable.
- An assignment $\alpha: \operatorname{var}(F) \rightarrow\{0,1\}$ satisfies a clause C if it sets a literal of C to true, and it satisfies F if it satisfies all clauses in F.

CNF-SAT

Input: \quad CNF formula F
Question: Does F have a satisfying assignment?
Example: $(x \vee \neg y \vee z) \wedge(\neg x \vee z) \wedge(\neg y \vee \neg z)$.

Lemma 10

CNF-SAT \in NP.

Proof.

Certificate: assignment α to the variables.
Given a certificate, it can be checked in polynomial time whether all clauses are satisfied.

Brute-force algorithms for problems in NP

Theorem 11

Every problem in NP can be solved in exponential time.

Brute-force algorithms for problems in NP

Theorem 11

Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that \exists a polynomial p and a polynomial-time verification algorithm V such that:

- for every $x \in \Pi$ (i.e., every Yes-instance for Π) \exists string $c \in\{0,1\}^{*}$, $|c| \leq p(|x|)$, such that $V(x, y)=1$, and
- for every $x \notin \Pi$ (i.e., every No-instance for Π) and every string $c \in\{0,1\}^{*}$, $V(x, c)=0$.

Brute-force algorithms for problems in NP

Theorem 11

Every problem in NP can be solved in exponential time.

Proof.

Let Π be an arbitrary problem in NP. [Use certificate-based definition of NP] We know that \exists a polynomial p and a polynomial-time verification algorithm V such that:

- for every $x \in \Pi$ (i.e., every Yes-instance for Π) \exists string $c \in\{0,1\}^{*}$, $|c| \leq p(|x|)$, such that $V(x, y)=1$, and
- for every $x \notin \Pi$ (i.e., every No-instance for Π) and every string $c \in\{0,1\}^{*}$, $V(x, c)=0$.
Now, we can prove there exists an exponential-time algorithm for Π with input x :
- For each string $c \in\{0,1\}^{*}$ with $|c| \leq p(|x|)$, evaluate $V(x, c)$ and return Yes if $V(x, c)=1$.
- Return No.

Running time: $2^{p(|x|)} \cdot n^{O(1)} \subseteq 2^{O(2 \cdot p(|x|))}=2^{O(p(|x|))}$, but non-constructive.

Outline

(1) Overview
(2) Turing Machines, P , and NP
(3) Reductions and NP-completeness

4 NP-complete problems
(5) Further Reading

Polynomial-time reduction

Definition 12

A language L_{1} is polynomial-time reducible to a language L_{2}, written $L_{1} \leq_{P} L_{2}$, if there exists a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all $x \in \Sigma^{*}$,

$$
x \in L_{1} \Leftrightarrow f(x) \in L_{2} .
$$

A polynomial time algorithm computing f is a reduction algorithm.

New polynomial-time algorithms via reductions

Lemma 13

If $L_{1}, L_{2} \in \Sigma^{*}$ are languages such that $L_{1} \leq_{P} L_{2}$, then $L_{2} \in \mathrm{P}$ implies $L_{1} \in \mathrm{P}$.

NP-completeness

Definition 14 (NP-hard)

A language $L \subseteq \Sigma^{*}$ is NP-hard if

$$
L^{\prime} \leq_{P} L \text { for every } L^{\prime} \in \mathrm{NP} .
$$

```
Definition 15 (NP-complete)
A language \(L \subseteq \Sigma^{*}\) is NP-complete (in NPC) if
(1) \(L \in N P\), and
(2) \(L\) is NP-hard.
```


A first NP-complete problem

Theorem 16

CNF-SAT is NP-complete.
Proved by encoding NTMs into SAT [Coo71; Lev73] and then CNF-SAT [Kar72].

Proving NP-completeness

Lemma 17

If L is a language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in$ NPC, then L is NP-hard. If, in addition, $L \in \mathrm{NP}$, then $L \in \mathrm{NPC}$.

Proving NP-completeness

Lemma 17

If L is a language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in$ NPC, then L is NP-hard. If, in addition, $L \in \mathrm{NP}$, then $L \in \mathrm{NPC}$.

Proof.

For all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime} \leq_{P} L^{\prime} \leq_{P} L$.
By transitivity, we have $L^{\prime \prime} \leq_{P} L$.
Thus, L is NP-hard.

Proving NP-completeness (2)

Method to prove that a language L is NP-complete:
(1) Prove $L \in \mathrm{NP}$
(2) Prove L is NP-hard.

- Select a known NP-complete language L^{\prime}.
- Describe an algorithm that computes a function f mapping every instance $x \in \Sigma^{*}$ of L^{\prime} to an instance $f(x)$ of L.
- Prove that $x \in L^{\prime} \Leftrightarrow f(x) \in L$ for all $x \in \Sigma^{*}$.
- Prove that the algorithm computing f runs in polynomial time.

Outline

(1) Overview

(2) Turing Machines, P , and NP

3 Reductions and NP-completeness

4 NP-complete problems

(5) Further Reading

3-CNF SAT is NP-hard

Theorem 18
 3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is NP-hard

Theorem 18

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.

3-CNF SAT is NP-hard

Theorem 18

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.

3-CNF SAT is NP-hard

Theorem 18

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F^{\prime} as follows. For each clause C in F :

- If C has at most 3 literals, then copy C into F^{\prime}.
- Otherwise, denote $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$.

3-CNF SAT is NP-hard

Theorem 18

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F^{\prime} as follows. For each clause C in F :

- If C has at most 3 literals, then copy C into F^{\prime}.
- Otherwise, denote $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$. Create $k-3$ new variables y_{1}, \ldots, y_{k-3}, and add the clauses

$$
\left(\ell_{1} \vee \ell_{2} \vee y_{1}\right),\left(\neg y_{1} \vee \ell_{3} \vee y_{2}\right),\left(\neg y_{2} \vee \ell_{4} \vee y_{3}\right), \ldots,\left(\neg y_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right) .
$$

3-CNF SAT is NP-hard

Theorem 18

3-CNF SAT is NP-complete.

Proof.

3-CNF SAT is in NP, since it is a special case of CNF-SAT.
To show that 3-CNF SAT is NP-hard, we give a polynomial reduction from CNF-SAT.
Let F be a CNF formula. The reduction algorithm constructs a 3-CNF formula F^{\prime} as follows. For each clause C in F :

- If C has at most 3 literals, then copy C into F^{\prime}.
- Otherwise, denote $C=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{k}\right)$. Create $k-3$ new variables y_{1}, \ldots, y_{k-3}, and add the clauses

$$
\left(\ell_{1} \vee \ell_{2} \vee y_{1}\right),\left(\neg y_{1} \vee \ell_{3} \vee y_{2}\right),\left(\neg y_{2} \vee \ell_{4} \vee y_{3}\right), \ldots,\left(\neg y_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right) .
$$

Show that F is satisfiable $\Leftrightarrow F^{\prime}$ is satisfiable.
Show that F^{\prime} can be computed in polynomial time (trivial; use a RAM).

Clique

A clique in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every two vertices of S are adjacent in G.

Clique

Input: \quad Graph G, integer k
Question: Does G have a clique of size k ?

Theorem 19

Clique is NP-complete.

Clique (2)

- Clique is in NP

Clique (2)

- Clique is in NP
- Let $F=C_{1} \wedge C_{2} \wedge \ldots C_{k}$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
$(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)$

Clique (2)

		- Clique is in NP - Let $F=C_{1} \wedge C_{2} \wedge \ldots C_{k}$ be a 3-CNF formula
$\neg x$ -	- x	- Construct a graph G that has a clique of size k iff F is satisfiable
$y-$ $z \bullet$	- y	- For each clause $C_{r}=\left(\ell_{1}^{r} \vee \cdots \vee \ell_{w}^{r}\right)$, $1 \leq r \leq k$, create w new vertices $v_{1}^{r}, \ldots, v_{w}^{r}$

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)
$$

Clique (2)

- Clique is in NP
- Let $F=C_{1} \wedge C_{2} \wedge \ldots C_{k}$ be a 3-CNF formula
- Construct a graph G that has a clique of size k iff F is satisfiable
- For each clause $C_{r}=\left(\ell_{1}^{r} \vee \cdots \vee \ell_{w}^{r}\right)$, $1 \leq r \leq k$, create w new vertices $v_{1}^{r}, \ldots, v_{w}^{r}$
- Add an edge between v_{i}^{r} and v_{j}^{s} if

$$
\begin{array}{ll}
r \neq s & \text { and } \\
\ell_{i}^{r} \neq \neg \ell_{j}^{s} & \text { where } \neg \neg x=x .
\end{array}
$$

- Check correctness and polynomial running time

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)
$$

Clique (2)

- Correctness: F has a satisfying assignment iff G has a clique of size k.

$$
(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)
$$

Clique (2)

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow) : Let α be a sat. assignment for F. For each clause C_{r}, choose a literal ℓ_{i}^{r} with $\alpha\left(\ell_{i}^{r}\right)=1$, and denote by s^{r} the corresponding vertex in G. Now, $\left\{s^{r}: 1 \leq r \leq k\right\}$ is a clique of size k in G since $\alpha(x) \neq \alpha(\neg x)$.

Clique (2)

$(\neg x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee y)$

- Correctness: F has a satisfying assignment iff G has a clique of size k.
- (\Rightarrow) : Let α be a sat. assignment for F. For each clause C_{r}, choose a literal ℓ_{i}^{r} with $\alpha\left(\ell_{i}^{r}\right)=1$, and denote by s^{r} the corresponding vertex in G. Now, $\left\{s^{r}: 1 \leq r \leq k\right\}$ is a clique of size k in G since $\alpha(x) \neq \alpha(\neg x)$.
- (\Leftarrow) : Let S be a clique of size k in G. Then, S contains exactly one vertex $s_{r} \in\left\{v_{1}^{r}, \ldots, v_{w}^{r}\right\}$ for each $r \in\{1, \ldots, k\}$. Denote by l^{r} the corresponding literal. Now, for any r, r^{\prime}, it is not the case that $l_{r}=\neg l_{r^{\prime}}$. Therefore, there is an assignment α to $\operatorname{var}(F)$ such that $\alpha\left(l_{r}\right)=1$ for each $r \in\{1, \ldots, k\}$ and α satisfies F.

Vertex Cover

A vertex cover in a graph $G=(V, E)$ is a subset of vertices $S \subseteq V$ such that every edge of G has an endpoint in S.

```
Vertex Cover
    Input: Graph G, integer k
    Question: Does G}\mathrm{ have a vertex cover of size k}k\mathrm{ ?
```


Theorem 20

Vertex Cover is NP-complete.
Exercise Sheet 1b.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph $G=(V, E)$ is a cycle visiting each vertex exactly once.
(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

```
Hamiltonian Cycle
Input: Graph G
Question: Does G have a Hamiltonian Cycle?
```


Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph $G=(V, E)$ is a cycle visiting each vertex exactly once.
(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

```
Hamiltonian Cycle
Input: Graph G
Question: Does G have a Hamiltonian Cycle?
```


Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch.

- Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.

Hamiltonian Cycle

A Hamiltonian Cycle in a graph $G=(V, E)$ is a cycle visiting each vertex exactly once.
(Alternatively, a permutation of V such that every two consecutive vertices are adjacent and the first and last vertex in the permutation are adjacent.)

```
Hamiltonian Cycle
Input: Graph G
Question: Does G have a Hamiltonian Cycle?
```


Theorem 21

Hamiltonian Cycle is NP-complete.

Proof sketch.

- Hamiltonian Cycle is in NP: the certificate is a Hamiltonian Cycle of G.
- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle

Hamiltonian Cycle (2)

Theorem 22

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle

Hamiltonian Cycle (2)

Theorem 22

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle
- Let $(G=(V, E), k)$ be an instance for Vertex Cover (VC).
- We will construct an equivalent instance G^{\prime} for Hamiltonian Cycle (HC).

Hamiltonian Cycle (2)

Theorem 22

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Let us show: Vertex Cover \leq_{P} Hamiltonian Cycle
- Let $(G=(V, E), k)$ be an instance for Vertex Cover (VC).
- We will construct an equivalent instance G^{\prime} for Hamiltonian Cycle (HC).
- Intuition: Non-deterministic choices
- for VC: which vertices to select in the vertex cover
- for HC: which route the cycle takes
\qquad

Hamiltonian Cycle (3)

Theorem 23

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_{1}, \ldots, s_{k} to G^{\prime} (selector vertices)

Hamiltonian Cycle (3)

Theorem 23

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_{1}, \ldots, s_{k} to G^{\prime} (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G^{\prime}
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G^{\prime} representing these edges.

Hamiltonian Cycle (3)

Theorem 23

Hamiltonian Cycle is NP-complete.

Proof sketch (continued).

- Add k vertices s_{1}, \ldots, s_{k} to G^{\prime} (selector vertices)
- Each edge of G will be represented by a gadget (subgraph) of G^{\prime}
- s.t. the set of edges covered by a vertex x in G corresponds to a partial cycle going through all gadgets of G^{\prime} representing these edges.
- Attention: we need to allow for an edge to be covered by both endpoints

Hamiltonian Cycle (4)

Gadget representing the edge $\{u, v\} \in E$ Its states: 'covered by u ', 'covered by u and v ', 'covered by v '

(a)

(b)

(c)

(d)

Hamiltonian Cycle (5)

S. Gaspers (UNSW)

Outline

(1) Overview

(2) Turing Machines, P , and NP

3 Reductions and NP-completeness

4 NP-complete problems

(5) Further Reading

Further Reading

- Chapter 34, NP-Completeness, in [Cor+09]
- Garey and Johnson's influential reference book [GJ79]

References I

- [Coo71] Stephen A. Cook. "The Complexity of Theorem-Proving Procedures". In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971). 1971, pp. 151-158.
- [Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. The MIT Press, 2009.
- [GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., 1979.
- [Kar72] Richard M. Karp. "Reducibility among combinatorial problems". In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N. Y., 1972). New York: Plenum, 1972, pp. 85-103.
- [Lev73] Leonid Levin. "Universal sequential search problems". In: Problems of Information Transmission 9.3 (1973), pp. 265-266.

