
2a. Kernelization

COMP6741: Parameterized and Exact Computation

Serge Gaspers

19T3

Contents

1 Vertex Cover 1
1.1 Simplification rules . 2
1.2 Preprocessing algorithm . 3

2 Kernelization algorithms 3

3 Kernel for Hamiltonian Cycle 4

4 Kernel for Edge Clique Cover 4

5 Kernels and Fixed-parameter tractability 6

6 Further Reading 6

1 Vertex Cover

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such that for each edge {u, v} ∈ E, we have
u ∈ S or v ∈ S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k?

a
b c

d e

Exercise 1

a

b
c d

e
f g

k = 4

1

Is this a Yes-instance for Vertex Cover? (Is there S ⊆ V with |S| ≤ 4, such that ∀ uv ∈ E, u ∈ S or v ∈ S?)

Exercise 2

a b c

d
e

f
g

h

i

j k

l

m

n

k = 7

1.1 Simplification rules

(Degree-0)
If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for every instance, it produces an equivalent instance. Two
instances I, I ′ are equivalent if they are both Yes-instances or they are both No-instances.

Lemma 1. (Degree-0) is sound.

Proof. First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of size at most k. Then, S is
also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a Yes-instance.

Now, suppose (G − v, k) is a No-instance. For the sake of contradiction, assume (G, k) is a Yes-instance. Let
S be a vertex cover for G of size at most k. But then, S \ {v} is a vertex cover of size at most k for G − v; a
contradiction.

(Degree-1)
If ∃v ∈ V such that dG(v) = 1, then set G← G−NG[v] and k ← k − 1.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, NG[v] = {u, v}.
If S is a vertex cover of G of size at most k, then S \ {u, v} is a vertex cover of G−NG[v] of size at most k− 1,

because u ∈ S or v ∈ S. If S′ is a vertex cover of G−NG[v] of size at most k − 1, then S′ ∪ {u} is a vertex cover
of G of size at most k, since all edges that are in G but not in G−NG[v] are incident to v.

(Large Degree)
If ∃v ∈ V such that dG(v) > k, then set G← G− v and k ← k − 1.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If v /∈ S, then NG(v) ⊆ S, contradicting that |S| ≤ k.

(Number of Edges)
If dG(v) ≤ k for each v ∈ V and |E| > k2 then return No

2

Lemma 4. (Number of Edges) is sound.

Proof. Assume dG(v) ≤ k for each v ∈ V and |E| > k2. Suppose S ⊆ V , |S| ≤ k, is a vertex cover of G. We have
that S covers at most k2 edges. However, |E| ≥ k2 + 1. Thus, S is not a vertex cover of G.

1.2 Preprocessing algorithm

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G′ and an integer k′ such that G has a vertex cover of size at most k if and only if G′

has a vertex cover of size at most k′.

G′ ← G
k′ ← k
repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G′, k′)
until no simplification rule applies
return (G′, k′)

Effectiveness of preprocessing algorithms

• How effective is VC-preprocess?

• We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

• Say that a preprocessing algorithm for a problem Π is nice if it runs in polynomial time and for each instance
for Π, it returns an instance for Π that is strictly smaller.

• → executing it a linear number of times reduces the instance to a single bit

• → such an algorithm would solve Π in polynomial time

• For NP-hard problems this is not possible unless P = NP

• We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

• We will measure the effectiveness in terms of the parameter

• How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 5. For any instance (G, k) for Vertex Cover, VC-preprocess produces an equivalent instance (G′, k′) of
size O(k2).

Proof. Since all simplification rules are sound, (G = (V,E), k) and (G′ = (V ′, E′), k′) are equivalent. By (Number
of Edges), |E′| ≤ (k′)2 ≤ k2. By (Degree-0) and (Degree-1), each vertex in V ′ has degree at least 2 in G′. Since∑

v∈V ′ dG′(v) = 2|E′| ≤ 2k2, this implies that |V ′| ≤ k2. Thus, |V ′|+ |E′| ⊆ O(k2).

2 Kernelization algorithms

Kernelization: definition

Definition 6. A kernelization for a parameterized problem Π is a polynomial time algorithm, which, for any
instance I of Π with parameter k, produces an equivalent instance I ′ of Π with parameter k′ such that |I ′| ≤ f(k)
and k′ ≤ f(k) for a computable function f . We refer to the function f as the size of the kernel.

Note: We do not formally require that k′ ≤ k, but this will be the case for many kernelizations.

3

VC-preprocess is a quadratic kernelization

Theorem 7. VC-preprocess is a O(k2) kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?
We defer this question for now.

3 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V (G)| vertices.

vc-Hamiltonian Cycle
Input: A graph G = (V,E).
Parameter: k = vc(G), the size of a smallest vertex cover of G.
Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an
instance?
Issue: We do not actually know a vertex cover of size k.We do not even know the value of k (it is not part of the
input).

• Obtain a vertex cover using an approximation algorithm. We will use a 2-approximation algorithm, producing
a vertex cover of size ≤ 2k in polynomial time.

• If C is a vertex cover of size ≤ 2k, then I = V \ C is an independent set of size ≥ |V | − 2k.

• No two consecutive vertices in the Hamiltonian Cycle can be in I.

• A kernel with ≤ 4k vertices can now be obtained with the following simplification rule.

(Too-large)
Compute a vertex cover C of size ≤ 2k in polynomial time. If 2|C| < |V |, then return No

4 Kernel for Edge Clique Cover

Definition 8. An edge clique cover of a graph G = (V,E) is a set of cliques in G covering all its edges. In other
words, if C ⊆ 2V is an edge clique cover then each S ∈ C is a clique in G and for each {u, v} ∈ E there exists an
S ∈ C such that u, v ∈ S.

Example: {{a, b, c}, {b, c, d, e}} is an edge clique cover for this graph.

a

b c

d e

Edge Clique Cover

Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover C is the number of cliques contained in C and is denoted |C|.

4

Helpful properties

Definition 9. A clique S in a graph G is a maximal clique if there is no other clique S′ in G with S ⊂ S′.

Lemma 10. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C′
of size at most k such that each S ∈ C′ is a maximal clique.

Proof sketch. (⇒): Replace each clique S ∈ C by a maximal clique S′ with S ⊆ S′.
(⇐): Trivial, since C′ is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover
Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an
instance?
The instance could have many degree-0 vertices.

(Isolated)
If there exists a vertex v ∈ V with dG(v) = 0, then set G← G− v.

Lemma 11. (Isolated) is sound.

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for G − v is a smallest edge clique cover
for G, and vice-versa.

(Isolated-Edge)
If ∃uv ∈ E such that dG(u) = dG(v) = 1, then set G← G− {u, v} and k ← k − 1.

(Twins)
If ∃u, v ∈ V , u 6= v, such that NG[u] = NG[v], then set G← G− v.

Lemma 12. (Twins) is sound.

Proof. We need to show that G has an edge clique cover of size at most k if and only if G − v has an edge clique
cover of size at most k.

(⇒): If C is an edge clique cover of G of size at most k, then {S \ {v} : S ∈ C} is an edge clique cover of G− v
of size at most k.

(⇐): Let C′ be an edge clique cover of G − v of size at most k. Partition C′ into C′u = {S ∈ C′ : u ∈ S} and
C′¬u = C′ \ C′u. Note that each set in Cu = {S ∪ {v} : S ∈ C′u} is a clique in G since NG[u] = NG[v] and that each
edge incident to v is contained in at least one of these cliques. Now, Cu ∪ C′¬u is an edge clique cover of G of size at
most k.

(Size-V)
If the previous simplification rules do not apply and |V | > 2k, then return No.

Lemma 13. (Size-V) is sound.

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, |V | > 2k, and G has
an edge clique cover C of size at most k. Since 2C (the set of all subsets of C) has size at most 2k, and every
vertex belongs to at least one clique in C by (Isolated), we have that there exists two vertices u, v ∈ V such that
{S ∈ C : u ∈ S} = {S ∈ C : v ∈ S}. But then, NG[u] =

⋃
S∈C:u∈S S =

⋃
S∈C:v∈S S = NG[v], contradicting that

(Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 14. Edge Clique Cover has a kernel with O(2k) vertices and O(4k) edges.

Corollary 15. Edge Clique Cover is FPT.

5

5 Kernels and Fixed-parameter tractability

Theorem 16. Let Π be a decidable parameterized problem. Π has a kernelization algorithm ⇔ Π is FPT.

Proof. (⇒): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm
on the resulting instance.

(⇐): Let A be an FPT algorithm for Π with running time O(f(k)nc). If f(k) < n, then A has running time
O(nc+1). In this case, the kernelization algorithm runs A and returns a trivial Yes- or No-instance depending on
the answer of A. Otherwise, f(k) ≥ n. In this case, the kernelization algorithm outputs the input instance.

6 Further Reading

• Chapter 2, Kernelization in [Cyg+15]

• Chapter 4, Kernelization in [DF13]

• Chapter 7, Data Reduction and Problem Kernels in [Nie06]

• Chapter 9, Kernelization and Linear Programming Techniques in [FG06]

• the new book on kernelization [Fom+19]

References

[Cyg+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[Fom+19] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory of Pa-
rameterized Preprocessing. Cambridge University Press, 2019.

[Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.

6

	Vertex Cover
	Simplification rules
	Preprocessing algorithm

	Kernelization algorithms
	Kernel for Hamiltonian Cycle
	Kernel for Edge Clique Cover
	Kernels and Fixed-parameter tractability
	Further Reading

