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Vertex cover

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V such that for
each edge {u, v} ∈ E, we have u ∈ S or v ∈ S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size at most k?
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d e
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Exercise 1

a

b
c d

e
f g

k = 4

Is this a Yes-instance for Vertex Cover?
(Is there S ⊆ V with |S| ≤ 4, such that ∀ uv ∈ E, u ∈ S or v ∈ S?)
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Exercise 2
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Simplification rules for Vertex Cover

(Degree-0)

If ∃v ∈ V such that dG(v) = 0, then set G← G− v.

Proving correctness. A simplification rule is sound if for every instance, it
produces an equivalent instance. Two instances I, I ′ are equivalent if they are
both Yes-instances or they are both No-instances.

Lemma 1

(Degree-0) is sound.

Proof.

First, suppose (G− v, k) is a Yes-instance. Let S be a vertex cover for G− v of
size at most k. Then, S is also a vertex cover for G since no edge of G is incident
to v. Thus, (G, k) is a Yes-instance.
Now, suppose (G− v, k) is a No-instance. For the sake of contradiction, assume
(G, k) is a Yes-instance. Let S be a vertex cover for G of size at most k. But
then, S \ {v} is a vertex cover of size at most k for G− v; a contradiction.
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Simplification rules for Vertex Cover

(Degree-1)

If ∃v ∈ V such that dG(v) = 1, then set G← G−NG[v] and k ← k − 1.

Lemma 1

(Degree-1) is sound.

Proof.

Let u be the neighbor of v in G. Thus, NG[v] = {u, v}.
If S is a vertex cover of G of size at most k, then S \ {u, v} is a vertex cover of
G−NG[v] of size at most k − 1, because u ∈ S or v ∈ S.
If S′ is a vertex cover of G−NG[v] of size at most k − 1, then S′ ∪ {u} is a
vertex cover of G of size at most k, since all edges that are in G but not in
G−NG[v] are incident to v.
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Simplification rules for Vertex Cover

(Large Degree)

If ∃v ∈ V such that dG(v) > k, then set G← G− v and k ← k − 1.

Lemma 1

(Large Degree) is sound.

Proof.

Let S be a vertex cover of G of size at most k. If v /∈ S, then NG(v) ⊆ S,
contradicting that |S| ≤ k.
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Simplification rules for Vertex Cover

(Number of Edges)

If dG(v) ≤ k for each v ∈ V and |E| > k2 then return No

Lemma 1

(Number of Edges) is sound.

Proof.

Assume dG(v) ≤ k for each v ∈ V and |E| > k2.
Suppose S ⊆ V , |S| ≤ k, is a vertex cover of G.
We have that S covers at most k2 edges.
However, |E| ≥ k2 + 1.
Thus, S is not a vertex cover of G.
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Preprocessing algorithm for Vertex Cover

VC-preprocess
Input: A graph G and an integer k.
Output: A graph G′ and an integer k′ such that G has a vertex cover of size

at most k if and only if G′ has a vertex cover of size at most k′.

G′ ← G
k′ ← k
repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and
(Number of Edges) for (G′, k′)

until no simplification rule applies
return (G′, k′)
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Effectiveness of preprocessing algorithms

How effective is VC-preprocess?

We would like to study preprocessing algorithms mathematically and quantify
their effectiveness.
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First try

Say that a preprocessing algorithm for a problem Π is nice if it runs in
polynomial time and for each instance for Π, it returns an instance for Π that
is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit

→ such an algorithm would solve Π in polynomial time

For NP-hard problems this is not possible unless P = NP

We need a different measure of effectiveness

S. Gaspers (UNSW) Kernelization 19T3 12 / 34



First try

Say that a preprocessing algorithm for a problem Π is nice if it runs in
polynomial time and for each instance for Π, it returns an instance for Π that
is strictly smaller.

→ executing it a linear number of times reduces the instance to a single bit

→ such an algorithm would solve Π in polynomial time

For NP-hard problems this is not possible unless P = NP

We need a different measure of effectiveness

S. Gaspers (UNSW) Kernelization 19T3 12 / 34



Measuring the effectiveness of preprocessing algorithms

We will measure the effectiveness in terms of the parameter

How large is the resulting instance in terms of the parameter?
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Effectiveness of VC-preprocess

Lemma 2

For any instance (G, k) for Vertex Cover, VC-preprocess produces an
equivalent instance (G′, k′) of size O(k2).

Proof.

Since all simplification rules are sound, (G = (V,E), k) and (G′ = (V ′, E′), k′)
are equivalent.
By (Number of Edges), |E′| ≤ (k′)2 ≤ k2.
By (Degree-0) and (Degree-1), each vertex in V ′ has degree at least 2 in G′.
Since

∑
v∈V ′ dG′(v) = 2|E′| ≤ 2k2, this implies that |V ′| ≤ k2.

Thus, |V ′|+ |E′| ⊆ O(k2).
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Kernelization: definition

Definition 3
A kernelization for a parameterized problem Π is a polynomial time algorithm,
which, for any instance I of Π with parameter k, produces an equivalent instance
I ′ of Π with parameter k′ such that |I ′| ≤ f(k) and k′ ≤ f(k) for a computable
function f .
We refer to the function f as the size of the kernel.

Note: We do not formally require that k′ ≤ k, but this will be the case for many
kernelizations.
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VC-preprocess is a quadratic kernelization

Theorem 4

VC-preprocess is a O(k2) kernelization for Vertex Cover.

Can we obtain a kernel with fewer vertices?
We defer this question for now.
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Hamiltonian Cycle I

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V (G)| vertices.

vc-Hamiltonian Cycle
Input: A graph G = (V,E).
Parameter: k = vc(G), the size of a smallest vertex cover of G.
Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny.
How can you simplify such an instance?
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Hamiltonian Cycle II

Issue: We do not actually know a vertex cover of size k.
We do not even know the value of k (it is not part of the input).
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Hamiltonian Cycle III

Obtain a vertex cover using an approximation algorithm. We will use a
2-approximation algorithm, producing a vertex cover of size ≤ 2k in
polynomial time.

If C is a vertex cover of size ≤ 2k, then I = V \ C is an independent set of
size ≥ |V | − 2k.

No two consecutive vertices in the Hamiltonian Cycle can be in I.

A kernel with ≤ 4k vertices can now be obtained with the following
simplification rule.

(Too-large)

Compute a vertex cover C of size ≤ 2k in polynomial time.
If 2|C| < |V |, then return No
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Edge Clique Cover

Definition 5

An edge clique cover of a graph G = (V,E) is a set of cliques in G covering all its
edges.
In other words, if C ⊆ 2V is an edge clique cover then each S ∈ C is a clique in G
and for each {u, v} ∈ E there exists an S ∈ C such that u, v ∈ S.

Example: {{a, b, c}, {b, c, d, e}} is an edge clique cover for this graph.

a

b c

d e
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Edge Clique Cover

Edge Clique Cover

Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have an edge clique cover of size at most k?

The size of an edge clique cover C is the number of cliques contained in C and is
denoted |C|.
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Helpful properties

Definition 5

A clique S in a graph G is a maximal clique if there is no other clique S′ in G
with S ⊂ S′.

Lemma 6

A graph G has an edge clique cover C of size at most k if and only if G has an
edge clique cover C′ of size at most k such that each S ∈ C′ is a maximal clique.

Proof sketch.

(⇒): Replace each clique S ∈ C by a maximal clique S′ with S ⊆ S′.
(⇐): Trivial, since C′ is an edge clique cover of size at most k.

S. Gaspers (UNSW) Kernelization 19T3 24 / 34



Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny.
How can you simplify such an instance?
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Simplification rules for Edge Clique Cover II

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex v ∈ V with dG(v) = 0, then set G← G− v.

Lemma 7

(Isolated) is sound.

Proof sketch.
Since no edge is incident to v, a smallest edge clique cover for G− v is a smallest
edge clique cover for G, and vice-versa.

(Isolated-Edge)

If ∃uv ∈ E such that dG(u) = dG(v) = 1, then set G← G− {u, v} and
k ← k − 1.
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Simplification rules for Edge Clique Cover III

(Twins)

If ∃u, v ∈ V , u 6= v, such that NG[u] = NG[v], then set G← G− v.

Lemma 8

(Twins) is sound.

Proof.
We need to show that G has an edge clique cover of size at most k if and only if
G− v has an edge clique cover of size at most k.
(⇒): If C is an edge clique cover of G of size at most k, then {S \ {v} : S ∈ C} is
an edge clique cover of G− v of size at most k.
(⇐): Let C′ be an edge clique cover of G− v of size at most k. Partition C′ into
C′u = {S ∈ C′ : u ∈ S} and C′¬u = C′ \ C′u. Note that each set in
Cu = {S ∪ {v} : S ∈ C′u} is a clique in G since NG[u] = NG[v] and that each
edge incident to v is contained in at least one of these cliques. Now, Cu ∪ C′¬u is
an edge clique cover of G of size at most k.
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Simplification rules for Edge Clique Cover IV

(Size-V)

If the previous simplification rules do not apply and |V | > 2k, then return No.

Lemma 9

(Size-V) is sound.

Proof.

For the sake of contradiction, assume neither (Isolated) nor (Twins) are
applicable, |V | > 2k, and G has an edge clique cover C of size at most k. Since
2C (the set of all subsets of C) has size at most 2k, and every vertex belongs to at
least one clique in C by (Isolated), we have that there exists two vertices u, v ∈ V
such that {S ∈ C : u ∈ S} = {S ∈ C : v ∈ S}. But then,
NG[u] =

⋃
S∈C:u∈S S =

⋃
S∈C:v∈S S = NG[v], contradicting that (Twin) is not

applicable.
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Kernel for Edge Clique Cover

Theorem 10

Edge Clique Cover has a kernel with O(2k) vertices and O(4k) edges.

Corollary 11

Edge Clique Cover is FPT.
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Kernels and Fixed-parameter tractability

Theorem 12
Let Π be a decidable parameterized problem.
Π has a kernelization algorithm ⇔ Π is FPT.

Proof.

(⇒): An FPT algorithm is obtained by first running the kernelization, and then
any brute-force algorithm on the resulting instance.
(⇐): Let A be an FPT algorithm for Π with running time O(f(k)nc).
If f(k) < n, then A has running time O(nc+1). In this case, the kernelization
algorithm runs A and returns a trivial Yes- or No-instance depending on the
answer of A.
Otherwise, f(k) ≥ n. In this case, the kernelization algorithm outputs the input
instance.
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Further Reading

Chapter 2, Kernelization in [Cyg+15]

Chapter 4, Kernelization in [DF13]

Chapter 7, Data Reduction and Problem Kernels in [Nie06]

Chapter 9, Kernelization and Linear Programming Techniques in [FG06]

the new book on kernelization [Fom+19]
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