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Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of its vertices S ⊆ V such that
every edge of G has at least one endpoint in S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size k?
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Algorithms for Vertex Cover

brute-force: O∗(2n)

brute-force: O∗(nk)

vc1: O∗(2k) (cf. Lecture 1)

vc2: O∗(1.4656k) (cf. Lecture 1)

fastest known: O(1.2738k + k · n) [CKX10]
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Running times in practice

n = 1000 vertices,
k = 20 parameter

Running Time
Theoretical Nb of Instructions Real

2n 1.07 · 10301 4.941 · 10282 years
nk 1060 4.611 · 1041 years

2k · n 1.05 · 109 15.26 milliseconds
1.4656k · n 2.10 · 106 0.31 milliseconds

1.2738k + k · n 2.02 · 104 0.0003 milliseconds

Notes:
– We assume that 236 instructions are carried out per second.
– The Big Bang happened roughly 13.5 · 109 years ago.
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Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)?
In other words, for which problem–parameter combinations are there algorithms
with running times of the form

f(k) · nO(1),

where the f is a computable function independent of the input size n?

(2) How small can we make the f(k)?
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Examples of Parameters

A Parameterized Problem
Input: an instance of the problem
Parameter: a parameter
Question: a Yes–No question about the instance and the parameter

A parameter can be

solution size
input size (trivial parameterization)
related to the structure of the input (maximum degree, treewidth,
branchwidth, genus, ...)
combinations of parameters
etc.
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Coloring

A k-coloring of a graph G = (V,E) is a function f : V → {1, 2, ..., k} assigning
colors to V such that no two adjacent vertices receive the same color.

Coloring
Input: Graph G, integer k
Parameter: k
Question: Does G have a k-coloring?

a b

c d e

f g h

Brute-force: O∗(kn), where n = |V (G)|.
Fastest known: O∗(2n) by inclusion-exclusion [BHK09]
FPT?
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Coloring is probably not FPT

Known: Coloring is NP-complete when k = 3

Suppose there was a O∗(f(k))-time algorithm for Coloring

Then, 3-Coloring can be solved in O∗(f(3)) ⊆ O∗(1) time
Therefore, P = NP

Therefore, Coloring is not FPT unless P = NP

S. Gaspers (UNSW) Basics of PC 19T3 12 / 23



Outline

1 Introduction
Vertex Cover
Coloring
Clique
∆-Clique

2 Basic Definitions

3 Further Reading

S. Gaspers (UNSW) Basics of PC 19T3 13 / 23



Clique

A clique in a graph G = (V,E) is a subset of its vertices S ⊆ V such that every
two vertices from S are adjacent in G.

Clique

Input: Graph G = (V,E), integer k
Parameter: k
Question: Does G have a clique of size k?

Is Clique NP-complete when k is a fixed constant? Is it FPT?
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Algorithm for Clique

For each subset S ⊆ V of size k, check whether all vertices of S are adjacent

Running time: O∗ ((n
k

))
⊆ O∗(nk)

When k ∈ O(1), this is polynomial

But: we do not currently know an FPT algorithm for Clique

Since Clique is W[1]-hard, we believe it is not FPT. (See lecture on
W -hardness.)
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A different parameter for Clique

∆-Clique

Input: Graph G = (V,E), integer k
Parameter: ∆(G), i.e., the maximum degree of G
Question: Does G have a clique of size k?

Is ∆-Clique FPT?
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Algorithm for ∆-Clique

Input: A graph G and an integer k.
Output: Yes if G has a clique of size k, and No otherwise.

if k = 0 then
return Yes

else if k > ∆(G) + 1 then
return No

else
/* A clique of size k contains at least one vertex v.

For each v ∈ V , we check whether G has a k-clique S
containing v (note that S ⊆ NG[v] in this case). */

foreach v ∈ V do
foreach S ⊆ NG[v] with |S| = k do

if S is a clique in G then
return Yes

return No

Running time: O∗((∆ + 1)k) ⊆ O∗((∆ + 1)∆). (FPT for parameter ∆)
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Main Parameterized Complexity Classes

n: instance size
k: parameter

P: class of problems that can be solved in nO(1) time
FPT: class of parameterized problems that can be solved in f(k) · nO(1) time
XP: class of parameterized problems that can be solved in f(k) · ng(k) time

(“polynomial when k is a constant”)

P ⊆ FPT ⊆W[1] ⊆W[2] · · · ⊆W[P ] ⊆ XP

Known: If FPT = W[1], then the Exponential Time Hypothesis fails, i.e. 3-Sat
can be solved in 2o(n) time, where n is the number of variables.

Note: We assume that f is computable and non-decreasing.
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Further Reading

Chapter 1, Introduction in [Cyg+15]

Chapter 2, The Basic Definitions in [DF13]

Chapter I, Foundations in [Nie06]

Preface in [FG06]
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