5a. Branching algorithms

COMP6741: Parameterized and Exact Computation

Serge Gaspers
School of Computer Science and Engineering, UNSW Sydney, Australia

19 T 3

Outline

(1) Branching algorithms
(2) Running time analysis
(3) Feedback Vertex Set
(4) Maximum Leaf Spanning Tree

(5) Further Reading

Outline

(1) Branching algorithms

(2) Running time analysis

(3) Feedback Vertex Set
(4) Maximum Leaf Spanning Tree

(5) Further Reading

Branching Algorithm

Branching Algorithm

- Selection: Select a local configuration of the problem instance
- Recursion: Recursively solve subinstances
- Combination: Compute a solution of the instance based on the solutions of the subinstances
- Halting rule: 0 recursive calls
- Simplification rule: 1 recursive call
- Branching rule: ≥ 2 recursive calls

Example: Our first Vertex Cover algorithm

Algorithm vc1 (G, k);
1 if $E=\emptyset$ then
// all edges are covered return Yes

3 else if $k \leq 0$ then // we cannot select any vertex
4 return No
5 else
6
Select an edge $u v \in E$;
return $\operatorname{vc1}(G-u, k-1) \vee \operatorname{vc1}(G-v, k-1)$

Outline

(1) Branching algorithms

(2) Running time analysis

(3) Feedback Vertex Set

(4) Maximum Leaf Spanning Tree
(5) Further Reading

Search trees

Recall: A search tree models the recursive calls of an algorithm.
For a b-way branching where the parameter k decreases by a at each recursive call, the number of nodes is at most $b^{k / a} \cdot(k / a+1)$.

If k / a and b are upper bounded by a function of k, and the time spent at each node is FPT (typically, polynomial), then we get an FPT running time.

Outline

(1) Branching algorithms

(2) Running time analysis
(3) Feedback Vertex Set
(4) Maximum Leaf Spanning Tree

(5) Further Reading

Feedback Vertex Set

A feedback vertex set of a multigraph $G=(V, E)$ is a set of vertices $S \subseteq V$ such that $G-S$ is acyclic.

```
Feedback Vertex Set
    Input: \(\quad\) Multigraph \(G=(V, E)\), integer \(k\)
    Parameter: \(k\)
    Question: Does \(G\) have a feedback vertex set of size at most \(k\) ?
```


Simplification Rules

We apply the first applicable ${ }^{1}$ simplification rule.

(Finished)

If G is acyclic and $k \geq 0$, then return Yes.

(Budget-exceeded)

If $k<0$, then return No.
${ }^{1} \mathrm{~A}$ simplification rule is applicable if it modifies the instance.

Simplification Rules

We apply the first applicable ${ }^{1}$ simplification rule.

(Finished)

If G is acyclic and $k \geq 0$, then return Yes.

(Budget-exceeded)

If $k<0$, then return No.

(Loop)

If G has a loop $v v \in E$, then set $G \leftarrow G-v$ and $k \leftarrow k-1$.
${ }^{1} \mathrm{~A}$ simplification rule is applicable if it modifies the instance.

Simplification Rules

We apply the first applicable ${ }^{1}$ simplification rule.

(Finished)

If G is acyclic and $k \geq 0$, then return Yes.

(Budget-exceeded)

If $k<0$, then return No.

(Loop)

If G has a loop $v v \in E$, then set $G \leftarrow G-v$ and $k \leftarrow k-1$.

(Multiedge)

If E contains an edge $u v$ more than twice, remove all but two copies of $u v$.
${ }^{1} \mathrm{~A}$ simplification rule is applicable if it modifies the instance.

Simplification Rules II

(Degree-1)
If $\exists v \in V$ with $d_{G}(v) \leq 1$, then set $G \leftarrow G-v$.

Simplification Rules III

(Degree-2)

If $\exists v \in V$ with $d_{G}(v)=2$, then denote $N_{G}(v)=\{u, w\}$ and set $G \leftarrow G^{\prime}=(V \backslash\{v\},(E \backslash\{v u, v w\}) \cup\{u w\})$.

Simplification Rules III

(Degree-2)

If $\exists v \in V$ with $d_{G}(v)=2$, then denote $N_{G}(v)=\{u, w\}$ and set $G \leftarrow G^{\prime}=(V \backslash\{v\},(E \backslash\{v u, v w\}) \cup\{u w\})$.

Lemma 1

(Degree-2) is sound.

Proof.

Suppose S is a feedback vertex set of G of size at most k. Let

$$
S^{\prime}= \begin{cases}S & \text { if } v \notin S \\ (S \backslash\{v\}) \cup\{u\} & \text { if } v \in S .\end{cases}
$$

Now, $\left|S^{\prime}\right| \leq k$ and S^{\prime} is a feedback vertex set of G^{\prime} since every cycle in G^{\prime} corresponds to a cycle in G, with, possibly, the edge $u w$ replaced by the path (u, v, w).
Suppose S^{\prime} is a feedback vertex set of G^{\prime} of size at most k. Then, S^{\prime} is also a feedback vertex set of G.

Remaining issues

- A select-discard branching decreases k in only one branch
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k

Remaining issues

- A select-discard branching decreases k in only one branch
- One could branch on all the vertices of a cycle, but the length of a shortest cycle might not be bounded by any function of k
Idea:
- An acyclic graph has average degree <2
- After applying simplification rules, G has average degree ≥ 3
- The selected feeback vertex set needs to be incident to many edges
- Does a feedback vertex set of size at most k contain at least one vertex among the $f(k)$ vertices of highest degree?

The fvs needs to be incident to many edges

Lemma 2

If S is a feedback vertex set of $G=(V, E)$, then

$$
\sum_{v \in S}\left(d_{G}(v)-1\right) \geq|E|-|V|+1
$$

The fvs needs to be incident to many edges

Lemma 2

If S is a feedback vertex set of $G=(V, E)$, then

$$
\sum_{v \in S}\left(d_{G}(v)-1\right) \geq|E|-|V|+1
$$

Proof.

Since $F=G-S$ is acyclic, $|E(F)| \leq|V|-|S|-1$.
Since every edge in $E \backslash E(F)$ is incident with a vertex of S, we have

$$
\begin{aligned}
|E| & =|E|-|E(F)|+|E(F)| \\
& \leq\left(\sum_{v \in S} d_{G}(v)\right)+(|V|-|S|-1) \\
& =\left(\sum_{v \in S}\left(d_{G}(v)-1\right)\right)+|V|-1
\end{aligned}
$$

The fvs needs to contain a high-degree vertex

Lemma 3

Let G be a graph with minimum degree at least 3 and let H denote a set of $3 k$ vertices of highest degree in G. Every feedback vertex set of G of size at most k contains at least one vertex of H.

The fvs needs to contain a high-degree vertex

Lemma 3

Let G be a graph with minimum degree at least 3 and let H denote a set of $3 k$ vertices of highest degree in G.
Every feedback vertex set of G of size at most k contains at least one vertex of H.

Proof.

Suppose not. Let S be a feedback vertex set with $|S| \leq k$ and $S \cap H=\emptyset$. Then,

$$
\begin{aligned}
2|E|-|V| & =\sum_{v \in V}\left(d_{G}(v)-1\right) \\
& =\sum_{v \in H}\left(d_{G}(v)-1\right)+\sum_{v \in V \backslash H}\left(d_{G}(v)-1\right) \\
& \geq 3 \cdot\left(\sum_{v \in S}\left(d_{G}(v)-1\right)\right)+\sum_{v \in S}\left(d_{G}(v)-1\right) \\
& \geq 4 \cdot(|E|-|V|+1) \\
\Leftrightarrow \quad 3|V| & \geq 2|E|+4 .
\end{aligned}
$$

But this contradicts the fact that every vertex of G has degree at least 3 .

Algorithm for Feedback Vertex Set

Theorem 4

Feedback Vertex Set can be solved in $O^{*}\left((3 k)^{k}\right)$ time.

Proof (sketch).

- Exhaustively apply the simplification rules.
- The branching rule computes H of size $3 k$, and branches into subproblems ($G-v, k-1$) for each $v \in H$.

Current best:
$O^{*}\left(3.460^{k}\right)$ deterministic [IK19],
$O^{*}\left(2.7^{k}\right)$ time randomized [LN19]

Outline

(1) Branching algorithms

(2) Running time analysis
(3) Feedback Vertex Set
4. Maximum Leaf Spanning Tree

(5) Further Reading

Maximum Leaf Spanning Tree

A leaf of a tree is a vertex with degree 1. A spanning tree in a graph $G=(V, E)$ is a subgraph of G that is a tree and has $|V|$ vertices.

```
Maximum Leaf Spanning Tree
Input: connected graph G
Parameter: k
Question: Does }G\mathrm{ have a spanning tree with at least }k\mathrm{ leaves?
```


Property

A k-leaf tree in G is a subgraph of G that is a tree with at least k leaves. A k-leaf spanning tree in G is a spanning tree in G with at least k leaves.

Lemma 5

Let $G=(V, E)$ be a connected graph.
G has a k-leaf tree $\Leftrightarrow G$ has a k-leaf spanning tree.

Proof.

(\Leftarrow) : trivial
(\Rightarrow) : Let T be a k-leaf tree in G. By induction on $x:=|V|-|V(T)|$, we will show that T can be extended to a k-leaf spanning tree in G.
Base case: $x=0 \checkmark$.
Induction: $x>0$, and assume the claim is true for all $x^{\prime}<x$. Choose $u v \in E$ such that $u \in V(T)$ and $v \notin V(T)$. Since $T^{\prime}:=(V(T) \cup\{v\}, E(T) \cup\{u v\})$ has $\geq k$ leaves and $<x$ external vertices, it can be extended to a k-leaf spanning tree in G by the induction hypothesis.

Strategy

- The branching algorithm will check whether G has a k-leaf tree.
- A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.
- "Guess" an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.

Strategy

- The branching algorithm will check whether G has a k-leaf tree.
- A tree with ≥ 3 vertices has at least one internal (= non-leaf) vertex.
- "Guess" an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
- In any branch, the algorithm has computed
- T - a tree in G
- I - the internal vertices of T, with $r \in I$
- B - a subset of the leaves of T where T may be extended: the boundary set
- L - the remaining leaves of T
- X - the external vertices $V \backslash V(T)$

Strategy

- The branching algorithm will check whether G has a k-leaf tree.
- A tree with ≥ 3 vertices has at least one internal ($=$ non-leaf) vertex.
- "Guess" an internal vertex r, i.e., do a $|V|$-way branching fixing an initial internal vertex r.
- In any branch, the algorithm has computed
- T - a tree in G
- I - the internal vertices of T, with $r \in I$
- $B-$ a subset of the leaves of T where T may be extended: the boundary set
- L - the remaining leaves of T
- X - the external vertices $V \backslash V(T)$
- The question is whether T can be extended to a k-leaf tree where all the vertices in L are leaves.

Simplification Rules

Apply the first applicable simplification rule:
(Halt-Yes)
If $|L|+|B| \geq k$, then return Yes.

(Halt-No)

If $|B|=0$, then return No.

(Non-extendable)

If $\exists v \in B$ with $N_{G}(v) \cap X=\emptyset$, then move v to L.

Branching Lemma

Lemma 6 (Branching Lemma)

Suppose $u \in B$ and there exists a k-leaf tree T^{\prime} extending T where u is an internal vertex.
Then, there exists a k-leaf tree $T^{\prime \prime}$ extending $\left(V(T) \cup N_{G}(u), E(T) \cup\left\{u v: v \in N_{G}(u) \cap X\right\}\right)$.

Branching Lemma

Lemma 6 (Branching Lemma)

Suppose $u \in B$ and there exists a k-leaf tree T^{\prime} extending T where u is an internal vertex.
Then, there exists a k-leaf tree $T^{\prime \prime}$ extending
$\left(V(T) \cup N_{G}(u), E(T) \cup\left\{u v: v \in N_{G}(u) \cap X\right\}\right)$.

Proof.

Start from $T^{\prime \prime} \leftarrow T^{\prime}$ and perform the following operation for each $v \in N_{G}(u) \cap X$. If $v \notin V\left(T^{\prime}\right)$, then add he vertex v and the edge $u v$.
Otherwise, add the edge $u v$, creating a cycle C in T and remove the other edge of C incident to v. This does not decrease the number of leaves, since it only increases the number of edges incident to u, and u was already internal.

Follow Path Lemma

Lemma 7 (Follow Path Lemma)

Suppose $u \in B$ and $\left|N_{G}(u) \cap X\right|=1$. Let $N_{G}(u) \cap X=\{v\}$. If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.

Follow Path Lemma

Lemma 7 (Follow Path Lemma)

Suppose $u \in B$ and $\left|N_{G}(u) \cap X\right|=1$. Let $N_{G}(u) \cap X=\{v\}$. If there exists a k-leaf tree extending T where u is internal, but no k-leaf tree extending T where u is a leaf, then there exists a k-leaf tree extending T where both u and v are internal.

Proof.

Suppose not, and let T^{\prime} be a k-leaf tree extending T where u is internal and v is a leaf. But then, $T-v$ is a k-leaf tree as well.

Algorithm

- Apply halting \& simplification rules
- Select $u \in B$. Branch into
- $u \in L$
- $u \in I$. In this case, add $X \cap N_{G}(u)$ to B (Branching Lemma).
- In the special case where $\left|X \cap N_{G}(u)\right|=1$, denote $\{v\}=X \cap N_{G}(u)$, make v internal, and add $N_{G}(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).
- In the special case where $\left|X \cap N_{G}(u)\right|=0$, return No.

Algorithm

- Apply halting \& simplification rules
- Select $u \in B$. Branch into
- $u \in L$
- $u \in I$. In this case, add $X \cap N_{G}(u)$ to B (Branching Lemma).
- In the special case where $\left|X \cap N_{G}(u)\right|=1$, denote $\{v\}=X \cap N_{G}(u)$, make v internal, and add $N_{G}(v) \cap X$ to B, continuing the same way until reaching a vertex with at least 2 neighbors in X (Follow Path Lemma).
- In the special case where $\left|X \cap N_{G}(u)\right|=0$, return No.
- In one branch, a vertex moves from B to L; in the other branch, $|B|$ increases by at least 1 .

Running time analysis

- Consider the "measure" $\mu:=2 k-2|L|-|B|$
- We have that $0 \leq \mu \leq 2 k$
- Branch where $u \in L$:
- $|B|$ decreases by $1,|L|$ increases by 1
- μ decreases by 1
- Branch where $u \in I$.
- u moves from B to I
- ≥ 2 vertices move from X to B
- μ decreases by at least 1
- Binary search tree of height $\leq \mu \leq 2 k$

Result for Maximum Leaf Spanning Tree

Theorem 8 ([KLR11])

Maximum Leaf Spanning Tree can be solved in $O^{*}\left(4^{k}\right)$ time.
Current best: $O\left(3.188^{k}\right)$ [Zeh18]

Outline

(1) Branching algorithms

(2) Running time analysis
(3) Feedback Vertex Set
(4) Maximum Leaf Spanning Tree
(5) Further Reading

Further Reading

- Chapter 3, Bounded Search Trees in [Cyg+15]
- Chapter 3, Bounded Search Trees in [DF13]
- Chapter 8, Depth-Bounded Search Trees in [Nie06]

References I

- [Cyg+15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
- [DF13] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
- [IK19] Yoichi Iwata and Yusuke Kobayashi. Improved Analysis of Highest-Degree Branching for Feedback Vertex Set. Tech. rep. abs/1905.12233. arXiv CoRR, 2019. URL: http://arxiv.org/abs/1905.12233.
- [KLR11] Joachim Kneis, Alexander Langer, and Peter Rossmanith. "A New Algorithm for Finding Trees with Many Leaves". In: Algorithmica 61.4 (2011), pp. 882-897.
- [LN19] Jason Li and Jesper Nederlof. Detecting Feedback Vertex Sets of Size k in $O^{*}\left(2.7^{k}\right)$ Time. Tech. rep. abs/1906.12298. arXiv CoRR, 2019. URL: http://arxiv.org/abs/1906.12298.

References II

- [Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University Press, 2006.
- [Zeh18] Meirav Zehavi. "The k-leaf spanning tree problem admits a klam value of 39". In: Eur. J. Comb. 68 (2018), pp. 175-203.

