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Iterative Compression

For a minimization problem:

Compression step: Given a solution of size k + 1, compress it to a solution
of size k or prove that there is no solution of size k

Iteration step: Incrementally build a solution to the given instance by
deriving solutions for larger and larger subinstances
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Example: Vertex Cover

A vertex cover in a graph G = (V,E) is a subset of its vertices S ⊆ V such that
every edge of G has at least one endpoint in S.

Vertex Cover
Input: A graph G = (V,E) and an integer k
Parameter: k
Question: Does G have a vertex cover of size k?

We will design a (slow) iterative compression algorithm for Vertex Cover to
illustrate the technique.
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Vertex Cover: Compression Step

Comp-VC
Input: graph G = (V,E), integer k, vertex cover C of size k + 1 of G
Output: a vertex cover C∗ of size ≤ k of G if one exists

C

C ′

C ′

V \ C

Go over all partitions (C ′, C ′) of C

C∗ = C ′ ∪N(C ′)

If C ′ is an independent set and |C∗| ≤ k then return C∗
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Vertex Cover: Iteration Step

Use algorithm for Comp-VC to solve Vertex Cover.

Order vertices: V = {v1, v2, . . . , vn}
Define Gi = G[{v1, v2, . . . , vi}]
C0 = ∅
For i = 1..n, find a vertex cover Ci of size ≤ k of Gi using the algorithm for
Comp-VC with input Gi and Ci−1 ∪ {vi}. If Gi has no vertex cover of size
≤ k, then G has no vertex cover of size ≤ k.

Final running time: O∗(2k)
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Feedback Vertex Set

A feedback vertex set of a multigraph G = (V,E) is a set of vertices S ⊆ V such
that G− S is acyclic.

Feedback Vertex Set (FVS)

Input: Multigraph G = (V,E), integer k
Parameter: k
Question: Does G have a feedback vertex set of size at most k?

Note: We already saw an O∗((3k)k) time algorithm (and a O∗(4k) time
randomized algorithm) for FVS.
We will now aim for a O∗(ck) time deterministic algorithm, with c ∈ O(1).
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Compression Problem

Comp-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of

G
Output: a feedback vertex set S∗ of size ≤ k of G if one exists
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Iteration step

Order vertices: V = {v1, v2, . . . , vn}
Define Gi = G[{v1, v2, . . . , vi}]
S0 = ∅
For i = 1..n, find a feedback vertex set Si of size ≤ k of Gi using the
algorithm for Comp-FVS with input Gi and Si−1 ∪ {vi}. If Gi has no
feedback vertex set of size ≤ k, then G has no feedback vertex set of size
≤ k.

Suppose Comp-FVS can be solved in O∗(ck) time.
Then, using this iteration, FVS can be solved in O∗(ck) time.
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Compression step

To solve Comp-FVS: for each partitions (S′, S′) of S, find a feedback vertex set
S∗ of G with |S∗| < |S| and S′ ⊆ S∗ ⊆ V \ S′ if one exists.

Equivalently, find a feedback vertex set S′′ of G− S′ with |S′′| < |S′| and
S′′ ∩ S′ = ∅.
We arrive at the following problem:

Disjoint-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of

G
Output: a feedback vertex set S∗ of G with |S∗| ≤ k and S∗ ∩ S = ∅, if one

exists

If Disjoint-FVS can be solved in O∗(dk) time, then Comp-FVS can be solved
in

O∗

(
k+1∑
i=0

(
k + 1

i

)
di

)
⊆ O∗((d+ 1)k) time

by the Binomial Theorem: (x+ y)n =
∑n

k=0

(
n
k

)
xn−kyk.
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Algorithm for Disjoint-FVS

Disjoint-FVS
Input: graph G = (V,E), integer k, feedback vertex set S of size k + 1 of

G
Output: a feedback vertex set S∗ of G with |S∗| ≤ k and S∗ ∩ S = ∅, if one

exists

Denote A := V \ S.

S A
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Simplification rules for Disjoint-FVS

S A

Start with S∗ = ∅.

(cycle-in-S)

If G[S] is not acyclic, then return No.

(budget-exceeded)

If k < 0, then return No.
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Simplification rules for Disjoint-FVS

S A

(finished)

If G− S∗ is acyclic, then return S∗.
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Simplification rules for Disjoint-FVS

S A

(creates-cycle)

If ∃v ∈ A such that G[S ∪ {v}] is not acyclic, then add v to S∗ and remove v
from G.
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Simplification rules for Disjoint-FVS

S A

(Degree-(≤ 1))

If ∃v ∈ V with dG(v) ≤ 1, then remove v from G.
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Simplification rules for Disjoint-FVS

S A

(Degree-2)

If ∃v ∈ V with dG(v) = 2 and at least one neighbor of v is in A, then add an
edge between the neighbors of v (even if there was already an edge) and remove v
from G.
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Branching rule for Disjoint-FVS

Select a vertex v ∈ A with at least 2 neighbors in S.
Such a vertex exists if no simplification rule applies (for example, we can take a
leaf in G[A]).
Branch into two subproblems:

v ∈ S∗: add v to S∗, remove v from G, and decrease k by 1

v /∈ S∗: add v to S

S. Gaspers (UNSW) Iterative Compression 19T3 15 / 26



Exercise: Running time

Prove that this algorithm has running time O∗(4k).
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Result for Feedback Vertex Set

Theorem 1

Feedback Vertex Set can be solved in O∗(5k) time.
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r-Hitting Set

A set system S is a pair (V,H), where V is a finite set of elements and H is a
collection of subsets of V . The rank of S is the maximum size of a set in H, i.e.,
maxY ∈H |Y |.
A hitting set of a set system S = (V,H) is a subset X of V such that X contains
at least one element of each set in H, i.e., X ∩ Y 6= ∅ for each Y ∈ H.

r-Hitting Set (r-HS)

Input: A rank r set system S = (V,H), an integer k
Parameter: k
Question: Does S have a hitting set of size at most k

Note: There is an easy O∗(rk) branching algorithm.
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
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X V \X

X ′

X ′

Go over all partitions (X ′, X ′) of X
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

Reject a partition if there is a Y ∈ H such that Y ⊆ X ′.
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

Compute a hitting set X ′′ of size ≤ k − |X ′| for (V ′, H ′), where V ′ = V \X and
H ′ = {Y ∩ V ′ : Y ∈ H ∧ Y ∩X ′ = ∅}, if one exists.
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Compression Step

Comp-r-HS
Input: set system S = (V,H), integer k, hitting set X of size k + 1 of S
Output: a hitting set X∗ of size ≤ k of S if one exists

X V \X

X ′

X ′

If one exists, then return X∗ = X ′ ∪X ′′.
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Compression Step II

The subinstances (V ′, H ′) where V ′ = V \X and
H ′ = {Y ∩ V : Y ∈ H ∧ Y ∩X ′ = ∅} are instances of (r − 1)-HS.

Suppose (r − 1)-HS can be solved in O∗((αr−1)
k) time. Then, Comp-r-HS

can be solved in

O∗

(
k∑

s=0

(
k + 1

s

)
(αr−1)

k−s

)
⊆ O∗

(
(αr−1 + 1)k

)
time.

Note: 2-HS is equivalent to Vertex Cover and can be solved in
O∗(1.2738k) time [CKX10].

Note 2: 3-HS can be solved in O∗(2.0755k) time [Wah07].
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Iteration Step

(V,H) instance of r-HS with V = {v1, v2, . . . , vn}
Vi = {v1, v2, . . . , vi} for i = 1 to n

Hi = {Y ∈ H : Y ⊆ Vi}

Note that |Xi−1| ≤ |Xi| ≤ |Xi−1|+ 1 where Xj is a minimum hitting set of
the instance (Vi, Hi)
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r-HS running time

Theorem 2

For r ≥ 3, r-HS can be solved in O((r − 0.9245)k) time.

By Monotone Local Search:

Theorem 3

For r ≥ 3, r-HS can be solved in O
((

2− 1
r−0.9245

)n)
time.
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Further Reading

Chapter 4, Iterative Compression in [Cyg+15]

Section 11.3, Iterative Compression in [Nie06]

Section 6.1, Iterative Compression: The Basic Technique in [DF13]

Section 6.2, Edge Bipartization in [DF13]
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