
COMP1511 - Programming
Fundamentals

Term 3, 2019 - Lecture 12

What did we cover yesterday?
Arguments in our main function

● How to read command line arguments

Professionalism

● Important skills for working with people

Pointers

● Memory addresses stored in variables
● These give us access to the memory where a variable is stored

What are we covering today?
Structs

● C has another way of collecting variables
● This time, it's able to store variables of different types

Pointers and Structs

● Pointers to structs
● A code example using pointers and structs

Recap - Pointers and Memory
What is a pointer?

● It’s a variable that stores the address of another variable of a specific type
● We call them pointers because knowing something’s address allows you

to “point” at it

Why pointers?

● They allow us to pass around the address of a variable instead of the
variable itself

Using Pointers
Pointers are like street addresses . . .

● We can create a pointer by declaring it with a * (like writing down a street
address)

● If we have a variable (like a house) and we want to know its address, we
use &

 int i = 100;
 // create a pointer called ip that points at
 // the location of i
 int *ip = &i;

Using Pointers
If we want to look at the variable that a pointer “points at”

● We use the * on a pointer to access the variable it points at
● Using the address analogy, this is like navigating to the house at that

address and looking inside the house

 int i = 100;
 // create a pointer called ip that points at
 // the location of i
 int *ip = &i;
 printf("The value of the variable at %p is %d", ip, *ip);

Pointers in Functions
We'll often use pointers as input to functions

● Pointers give a function access to a variable that's in memory
● They also allow us to affect multiple variables instead of only having one

output

void swap_nums(int *num1, int *num2) {
 int temp = *num1;
 *num1 = *num2;
 *num2 = temp;
}

Pointers and Arrays
These are very similar

● Arrays are actually memory addresses along with a certain amount of
memory set aside for their use

● Pointers are also memory addresses
● This gives both pointers and arrays access to memory

Structs
A new way of collecting variables together

● Structs (short for structures) are a way to create custom variables
● Structs are variables that are made up of other variables
● They are not limited to a single type like arrays
● They are also able to name their variables
● Structs are like the bento box of variable collections

Before we can use a struct . . .
Structs are like creating our own variable type

● We need to declare this type before any of the functions that use it
● We declare what a struct is called and what the fields (variables) are

struct bender {
 char name[MAX_LENGTH];
 char element[MAX_LENGTH];
 int power;
 int health;
};

Creating a struct variable and accessing its fields
Declaring and populating a struct variable

● Declaring a struct: "struct structname variablename;"
● Use the . to access any of the fields inside the struct by name

int main(void) {
 struct bender aang;
 strcpy(aang.name, "Aang");
 strcpy(aang.element, "Air");
 aang.power = 10;
 aang.health = 5;

 printf("%s's element is: %s.\n", aang.name, aang.element);
}

Accessing Structs through pointers
Pointers and structs go together so often that they have a shorthand!

 struct bender *avatar = &aang;

 // knowledge of pointers suggests using this
 *avatar.power = 10;

 // but there's another symbol that automatically
 // dereferences the pointer and accesses a field
 // inside the struct
 avatar->power = 10;

Structs as Variables
Structs can be treated as variables

● Yes, this means arrays of structs are possible
● It also means structs can be some of the variables inside other structs
● In general, it means that once you've defined what a struct is, you use it

like any other variable

Break Time
Breaking into new territory

● The first half of the course may be familiar to anyone who's looked at
programming before

● It also had concepts that, while important, are not very complex

● The second half of the course will leverage what you've learnt
● And will add both complexity and some concepts that take a little bit more

abstract thinking

Let's write some code
Element Benders are having a fight in a forest!

● A team of four benders against one very powerful enemy
● We'll create a struct that represents a bender
● We'll have four of them in a team
● And one who will fight them all
● We'll create some functions that pit the benders against each other
● We'll loop a series of attacks until either side has lost

Create Structs for Characters
Create a struct to allow us to represent the characters

We'll borrow the one we created earlier

struct bender {
 char name[MAX_LENGTH];
 char element[MAX_LENGTH];
 int power;
 int health;
};

Create the actual struct variables
The struct is defined, now we create the actual variables

● The team can be in an array

int main (void) {
 struct bender companions[TEAM_SIZE];
 strcpy(companions[0].name, "Avatar Aang");
 strcpy(companions[0].element, "Air");
 companions[0].power = 10;
 companions[0].health = 5;
 strcpy(companions[1].name, "Katara");
 strcpy(companions[1].element, "Water");
 companions[1].power = 7;
 companions[1].health = 7;
 // etc

The struct is a variable type
Each instance of the struct can have a different name and stats

● Which means we can use the same struct for different characters!
● It also means that any of our characters are now interchangeable

 struct bender zuko;
 strcpy(zuko.name, "Prince Zuko");
 strcpy(zuko.element, "Fire");
 zuko.power = 20;
 zuko.health = 20;

Let's use a function for a single attack
We pass pointers to structs in the function

This allows the function to make changes to our characters

void attack(struct bender *attacker, struct bender *target) {
 printf("%s attacks %s for %d damage.\n",
 attacker->name, target->name, attacker->power
);
 target->health -= attacker->power;
 if (target->health <= 0) {
 // target has run out of health
 printf("%s is knocked out.\n", target->name);
 }
}

Passing addresses into functions
● We're passing addresses of structs to the attack function
● We do this by declaring that the function takes pointers as input (*)
● And when we call the function, we provide the addresses (&) of the

variables
● This allows the function to know where it can access our data (including

the ability to change it)

Calling the attack function
If we just want a duel between one bender and Zuko

But if we want to be able to use pointers to each of them

 int teamCount = 0;
 attack(&zuko, &companions[teamCount]);
 attack(&companions[teamCount], &zuko);

 int teamCount = 0;
 struct bender *companion = &companions[teamCount];
 struct bender *prince = &zuko;
 attack(prince, companion);
 attack(companion, prince);

Let's fight until one side loses
Let's loop and keep attacking until either side is knocked out

● We'll need a function that tells us whether either side has run out of
health

● Then we'll need a loop that keeps the fight going, letting the companions
step in for each other if one is knocked out

stillAlive()
int stillAlive(struct bender *solo, struct bender team[TEAM_SIZE]) {
 int sAlive = 1;
 int tAlive = 0;
 if (solo->health <= 0) {
 sAlive = 0;
 }
 int i = 0;
 while (i < TEAM_SIZE) {
 if (team[i].health > 0) {
 tAlive = 1;
 }
 i++;
 }
 return sAlive * tAlive;
}

The main loop
 int teamCount = 0;
 struct bender *companion = &companions[teamCount];
 declareElement(companion);
 struct bender *prince = &zuko;
 while (stillAlive(prince, companions)) {
 if (companion->health <= 0) {
 // this companion is knocked out, move on
 benderCount++;
 companion = &companions[teamCount];
 declareElement(companion);
 } else {
 attack(prince, companion);
 attack(companion, prince);
 }
 }

The declareElement function
A void function doesn't give any information back to the rest of the program
but it still might have some useful side effects

// A simple function to declare a bender's name and their element
void declareElement(struct bender *fighter) {

printf(
 "%s wields the element: %s\n",
 fighter->name,
 fighter->element
);
}

We might want a bit more variation
Introducing rand() - A random number generator from C's Standard
Library

● Calling rand() will return an int from a generated sequence
● The sequence appears random
● But if we run the program again, it will generate the same sequence!

● srand() allows us to give a seed to our random number generator
● We can use "seed" values to select different sequences to use
● If we try to run different seeds every time, we'll get different sequences

Seed the rand() with command line input
● We can take input from the command line that ran the program and use

that as our seed value
● This lets us change the sequence each time

int main (int argc, char *argv[]) {
 if (argc > 1) {
 // if we received a command line argument,
 // use that as our random seed
 srand(strtol(argv[1], NULL, 10));
 }

Let's add some randomness to the attack
Using rand and % we can get an int that's between 0 and a number

● Now the damage is inconsistent, we won't always know the result

void attack(struct bender *attacker, struct bender *target) {
 int damage = rand() % attacker->power;
 printf("%s attacks %s for %d damage.\n",
 attacker->name, target->name, damage
);
 target->health -= damage;
 if (target->health <= 0) {
 // target has run out of health
 printf("%s is knocked out.\n", target->name);
 }
}

So we have a complete element bender battle!
We're looping through the fight and we don't always know the outcome!

● We've declared our first struct
● We also used it just like a variable in an array
● We passed pointers to our structs into functions

What's next?

● Can you write better style than this?
● There are a few places where separating things into functions would be

very effective at increasing readability!

What did we learn today
Structs

● We've used structs as elements of an array
● We've used structs as members of another struct

● We're now seeing more complex code using strings, libraries, functions,
pointers and structs

