ENGG1811 Computing for Engineers

Week 1

Introduction to Programming
and Python

ENGG1811 © UNSW, CRICOS Provider No: 00098G

Computers have changed engineering ...

https://blog.sips

Computers have

How computing is used in engineering?

« Automation is a major application of computing in
engineering

— There are many other applications of computing in engineering.
More to come.

— Message: Computing will play a key role in addressing grand
challenges in engineering, e.q., aging infrastructure, eftc.

— http://www.engineeringchallenges.org

« Automation: Computers/machines repeatedly performing
the same procedure

— Procedure: a sequence of instructions

http://www.engineeringchallenges.org/
http://www.engineeringchallenges.org/

Problem solving

* Engineering: invention, problem solving, ...

* Problem solving requires you to understand how
things work, test out ideas etc.

— How can you use computers to understand, investigate,
test and design?

Programming

* |If you come out with a method for the
computer to solve a problem, you need to be
able to tell the computer how to do it.

— You need to give instructions to computers

* Programming skill: The ability to give
instructions to computers to perform the
iIntended tasks

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 6

A role-play game

* We will play a game on giving instructions to
“‘computers”

* We need a volunteer or two volunteers working
together

* The lecturer will provide the instructions of this
game

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 7

Python

* Python will be the programming language that you
will use to learn how to give instructions to

computers

 |tis a popular programming language and it
comes with a lot of extra packages that help you
to do engineering work

 We use Python 3, not Python 2.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 8

Spyder

* We will use a program called Spyder to develop,
test and run Python programs

« Spyder is available on all UNSW CSE computers
* You will also use Spyder in the lab
* If you want to use Spyder on your computer, your

options are:

— Install Anaconda on your computer

— Use the UNSW CSE computers remotely. This
requires Internet access.

— More details in the Getting Started section of the
course website

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 9

Buttons The Spyder Environment

XX

Spyder (Python 3.8)
B & B B » 3 @ L, m» &~ v 1 » = @ F

[Users[z3117703/D: 1ts/Work/teaching/s 34/2022/:

A |Users[z3117703

eralffinalising/wd/wd.py 3 e L] Q c
0 x untitled0.py*

Nana Type Size Value
#!/usr/bin/env python3
—*— coding: utf-8 —x-—

nnn

Created on Sun Sep 11 17:54:42 2022

@author: 23117703

nnn

Help Variable Explorer Plots Files

0O x Console 1/A Ll

Python 3.8.13 (default, Mar 28 2022, 06:16:26)
Type "copyright", "credits" or "license" for more information.

IPython 7.31.1 —— An enhanced Interactive Python.
In [1]:

IPython Console History
<, LSPPython: ready @ conda: base (Python3.8.13,

€9,Col1 UTF-8 LF RW Mem57%‘

Editor for developing

iPython Console
Python programs

‘i’ is short for interactive

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 10

Using the iPython Console

* We will simply call it the console

* You can use the console to do some simple
programming

* You do that by typing commands at the prompt
— Commands are instructions to tell the computers to do

something
In [1]: |
\\ | IPython console | History log
The You type the command at the blinking cursor. After
prompt you've finished typing, use the Enter (or Return) key

to tell the console to execute the commands.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 11

If you haven’t got Spyder yet,

* You can use iPython Console online at:
— https://www.pythonanywhere.com/try-ipython/
— https://trinket.io/console

* We will only be using iPython Console today but we
will use the editor in the next lecture. So make sure
you install Anaconda before that.

— Instructions can be found under Getting Started on the
course website

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 12

https://www.pythonanywhere.com/try-ipython/
https://www.pythonanywhere.com/try-ipython/
https://www.pythonanywhere.com/try-ipython/
https://www.pythonanywhere.com/try-ipython/
https://trinket.io/console
https://trinket.io/console

Using console to do arithmetic

* Type 3+4 at the console, as follows:
In [1]: 3 + 4
il Python console | History log

* And then type the Enter key

* The computer executes the instruction, which
Is to add 3 and 4

* The console returns the answer

In [1]: 3 + 4
OQut[l]: 7

In [2]:

IPython console History log
ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 13

Arithmetic Operators in Python

Operator |Description

+ Addition or unary plus

— Subtraction or unary minus
Multiplication

/ Floating point division

// Integer division (fraction discarded)

% Integer modulus (remainder)
Exponentiation (power)

ENGG1811

© UNSW, CRICOS Provider No: 00098G

W4 slide 14

* Type the following at the prompt and then
execute the command, observe what you get
and try to understand the meaning of the

Exercises:

arithmetic operators

ENGG1811

274
274
10/7
10//7
10 % 7
10 - -7

© UNSW, CRICOS Provider No: 00098G

W4 slide 15

Unary and binary operations

* + and — can be unary or binary
* For example,

Binary minus Unary minus
= Subtract 2 numbers = Negative sign

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 16

Precedence

* You can use the arithmetic operators to calculate
complicated expressions

* Youcantype:1l + 2 * 3 - 4
— Should this be 3 or 5?

 The computers evaluate arithmetic expressions
according to the rule of precedence

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 17

Precedence

e When evaluating arithmetic expressions, order of
evaluating operations determined by precedence

A

Operator Higher precedence

()

X %

+ - (unary: sign)

*/ w//
+ - (binary)

Lower precedence

e You do not need to memorise this. Look it up when you
need. We will give this to you in the exam.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 18

Evaluating Expressions —
Rules of Precedence

e When evaluating expressions, operations of higher
precedence are performed before those of lower
precedence

2 +3 %4 =2+ (3*4)=14

o If there are multiple operations with the same
precedence

— Case 1: Multiple **, Evaluate from right to left
o Example: 4 ** 3 ** 2 = 4 ** (3 ** 2) = 262144

— Case 2: Other operators. Evaluate from left to right
e Example: 30// 4% 2=(30//4)%2=7%2=1

e If unsure, use parentheses or test using a simple
expression

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 19

Quiz:

* You want to calculate:

20
DX 2

* Which one can you not use?

a) 20/5/2
b) 20/5 * 2
c) 20/ (5 *2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 20

Quiz

 What is -2**2 in Python?

a) 4 .e. (-2)**2

b) -4 .e. —(2**2)

Operator Higher precedence
()

Xk

+ - (unary: sign)

/% //
+ - (binary)

ENGG1811 © UNSW, CRICOS Provider No* 00098G W4 slide 21

Lower precedence

An exception to the rule

 If a unary — or + is to the right of **, then the
unary is evaluated first

« 10™*-2 =0.01

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 22

Variables and the assignment operator

* Type the following at the prompt and enter

* You can use y again to do computation

In [9]: y =5
In [9]: y =5
In [10]: 7 x vy
Out[10]: 35

In [11]: y / 2
Out[1ll1l]: 2.5
In [12]: vy
Out[12]: 5

ENGG1811

© UNSW, CRICOS P

 We say we assign the
value of 5 to the
variable named y

 We call =the
assignment operator

 Each line of instructions
Is a Python statement

rovider No: 00098G W4 slide 23

Programming element: Variables

* Variables are stored in computer memory
* A variable has a name and a value
* A mental picture is:

y 5

Variable name Value of variable

A program manipulates variables to achieve its goal

Note: This is a simplified view. We will introduce the
more accurate view later in the course.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 24

Expressions of variables

* You can combine variables in an expression
* Try this in the console:

b=2: c=5;d=10;

In [24]:
In [25]:

In [26]:
Out[26]:

In [27]:

In [28]:
Out[28]:

ENGG1811

f = (d/c)*xb
f

4.0

d = ckxb

d

25

Old value of the
variable d iIs
overwritten

© UNSW, CRICOS Provider No: 00098G W4 slide 25

Execution of arithmetic expressions

_ Name of variables Value of variables
« Variables are b 5
stored In
C 5
memory
d 10
d = c **Db

Look up the values of cand b
2. Compute c to the power of b

3. Store the result in the memory for d

« Since the value of d was 10 before executing d = ¢ ** b,
the value of d is overwritten and has become 25

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 26

Assignment errors

You must assign a

In [32]: x - 6 :
Traceback (most recent call last): value toa.varlable
before using it

File "<ipython-input-32-86a84d68a48a>", line 1, in <module>
X — 0

ameError: name 'x' 1s not defi@

In [31]: ckxb = d Order is important.
File "<ipython-inputygrigble name = expression
ckxb = d
B o N—

GyntaxError: can't assign to operator >

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 27

Variable names are case sensitive / debugging
In [100]: num = 2.15

In [101]: Num
Traceback (most recent call last):

File "<ipython-input-101-0b87731cbe51>", line 1, in <module>
Num

@Error: name 'Num' 1is not defined>

* You should read the error message and try to understand what it means
so that you can fix your own code later on

— Programmers use the term debugging to mean fixing the code. See below for
a discussion on the origin of the term and a picture of the moth which
apparently stopped a computer program from its execution

— https://en.wikipedia.org/wiki/Debugging

 Don’t get upset if you get bugs in your code. It's a fact of life in computer
programming. What is important is you learn how to debug.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 28

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Debugging

Don’t interpret assignment as equal sign

* |n mathematics, the expression x=x+ 10 Isa
contradiction

* |n computer programming, = is the assignment
operator, so y =y + 190 Means the following
operations

In [34]: x =7
Take the value of the variable x

X + 10 (whichis 7), add 10 to it and
assign the result (which is 17)
In [36]: X to the variable x

Qut[36]: 17

In [35]:

X
Il

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 29

Quiz

 \What is the value of the variable x after
executing the following statements?

x =10
X=X+2
X=X+2

X=X+2

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 30

Try yourselves

* You can also try these

x =10
X=X%*X
X=X%3
X=2/(x+7)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 31

Numbers and text

» Computers can handle numbers
— Engineering data are often in numbers
— Data processing is important in engineering
— Numbers can also be used to represent

* Images: Photos, X-ray images, medical images
* Videos, music, speeches etc.

» Computers can also handle text
— Data can also be in text

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 32

Strings

* |In Python, text is represented as strings

« Strings are always enclosed within a pair of
matching single quotes or double quotes

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 33

Strings: examples

In [6]: s = 'U'

In [7]: s
Out[7]: 'U'

In [8]: my_uni = "UNSW'

In [9]: my_uni
Out[9]: '"UNSW'

In [10]: liar = 'He said that he was born on 29/02/2003. What a liar!'

In [11]: liar
Out[1l1l]: 'He said that he was born on 29/02/2003. What a liar!''

* The variable s is a string of one character
* The variable my_uni is a string with 4 characters

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 34

String manipulations

* You can
— Concatenate strings using +
— Repeat strings using *

In

In

Out

(15] :
(16] :

17]:
171 :

strl =
str3 =

str3
'He 1s

'He 1is a

strl + str2

a great violinist'

* Try the following yourselves

In [19]: num_ten =

ENGG1811

10; 'This is ' +

© UNSW, CRICOS Provider No: 00098G

SO

; str2 = 'great violinist'

*x num_ten + "yummy!'

W4 slide 35

Limitation of the console

* You have used the console to
— Assign variables
— Perform some simple computation
— Manipulate strings

* The console is good for testing one or few lines
of statements

* A more powerful method is to put the Python
statements into a file, or a Python program

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 36

Program to convert Fahrenheit to Celsius

* We will write a program to convert a
temperature F in Fahrenheit to its equivalent
temperature C in Celsius

* The temperatures F and C are related by

(F—amg

* We will develop the program step by step

* We will type the program using the editor in
Spyder

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 37

The Spyder editor

New file Save file Run file

Spyder (Py

» m] p A

[Users/z3117703/untitled0.py

DO x untitled0.py

#!/usr/bin/env python3
—k— coding: utf-8 —x-

nnn

Created on Sun Sep 11 17:54:42 2022

@author: z3117703

nnn

Start typing in program here

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 38

F to C conversion (version 1)

temp_fahrenheit = 80

temp_celsius = (temp_fahrenheit - 32) % (5 / 9)

print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

Tips:
— Spyder gives a list of possible completions
— The Tab key can complete variable name for you

After typing the program, you should save it:
— Do give the program a meaningful name.

— QOrganise files using folders
— Note that Python programs have the extension .py
— Don't forget to save the file regularly when you work on Spyder

You can run the program using the run button p
Results will be displayed in the console

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 39

The print function

temp_fahrenheit = 80

temp_celsius = (temp_fahrenheit - 32) % (5 / 9)

print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

 print is a function in Python to display results

* Any text within single quotes will be displayed as is
— You can also use double quotes. They are strings.

 If print sees a variable name, it will display the
value of the variable

* The displayed output is the concatenation of the
parts separated by commas

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 40

Program execution

temp_fahrenheit = 80

temp_celsius = (temp_fahrenheit - 32) x (5 / 9)

print(temp_fahrenheit, ‘in F = ', temp_celsius, 'in C')

» This program consists of 3 statements
— Atlines 9, 11 and 13

* The statements are executed in the order that they
appear

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 41

Identifiers

Words like temp_celsius in the example
program are called identifiers
— Identifiers are used for names of variables

— Identifiers are sequences of letters (a-z, A-2),
digits (0-9) and underscores (_)

— Identifier can only begin with a letter
- Examples of valid identifiers
modulel x42 temp y origin

Quiz: Which of the following identifiers
are valid?

day 2day day of the week day2 $24 see-saw

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 42

Keywords

e Python has a number of keywords or reserved words
e You cannot use them as variable names

e Don't worry about memorising them now, you will see
them a lot later on and will know them as your friends ©

T TOT T TTTTTTTO TTTTTO TTTTO T

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

https://www.programiz.com/python-programming/keywords-identifier

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 43

Rules for choosing identifiers

* Rule 1: Must be valid
* Rule 2: Avoid keywords

* The program will run if it doesn’t violate Rules
1 and 2

* Rule 3: Choose meaningful identifiers

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 44

Identifier Conventions

e Identifier conventions have been devised to make
programs more readable

— Use meaningful variable names, most Python
programmers use lower case words separated by
underscore for readability

temperature num_count
mass_in kg is within _normal range

— OK to use short names for minor or short-lived data

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 45

Notes

e Software readability is an important issue.
Here is a style guide to writing Python
program, known as PEPS:

- ENGG1811 has its own style guide

e Note that for some other computer
languages, programmers use camel case as
the style for identifiers

— Camel case: first word is all lower case, the first
letter of subsequent words in upper case, e.g.
isWithinNormalRange, thisYear

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 46

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

F to C conversion (Version 2)

The temperature in Fahrenheit to be converted
temp_fahrenheit = 80

Convert to Celsius using standard formula

temp_celsius = (temp_fahrenheit - 32) *x (5 / 9)

Output the temperature in Celsius
print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

« Comments are added to explain how a program works
— All text after the # symbol is comment

« Comments are ignored when a program is executed
« Comments are for people to read

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 47

F to C conversion (version 3)

Constants
MELTING_POINT_FAHRENHEIT = 32
RATIO = 5 / 9 # Scaling factor

The temperature in Fahrenheit to be converted
temp_fahrenheit = 80 # Change here if needed

Convert to Celsius using standard formula
temp_celsius = (temp_fahrenheit - MELTING_POINT_FAHRENHEIT) * RATIO

Output the temperature in Celsius
print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

e Fixed or constant values are often required at several
places in a program

e By giving a name to the constant...
— The reader understands what the value means

o for example, only hard-core physicists would recognise 1.3806503e-
23 in a calculation (it's Boltzmann’s constant)

e Name format convention: ALL_CAPS
e Define the constants at the beginning of the program

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 48

Why documenting a program

« Say, you've written a program that does some
fabulous work for you. It is possible that you may
need to modify it a few months later. You may have
difficulty figuring out how you did it earlier if you
haven’'t documented it

» Use Python docstrings

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 49

Python docstring

Purpose: To convert temperature from Fahrenheit to Celsius
where the temperature to be converted is input from

the console

Author: Mary Poppins
Date: 11/9/25

Data dictionary:
temp_fahrenheit temperature in Fahrenheit to be converted to Celsius

temp_celsius temperature in Celsius (final result)

Method:
Use the formula Celsius = (Fahrenheit - 32) * 5 / 9

* Docstring is enclosed with a pair of triple double
guotes or triple single quotes

* Spyder typesets it in green
 The contents are comments, i.e., not executed

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 50

Documentation

e Begin with:
— Purpose, author, date

e Then data dictionary
- list of variables used and how they are used

e Then problem parameter assignments if
applicable

e Program description, method

e Beware of the difference between purpose and method
e Purpose (what?). Method (how?)

e Expectations:
- Lab programs must be reasonably documented
- Documentation carries marks in assignments

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 51

Make the program more interactive

The temperature in Fahrenheit to be converted
temp_fahrenheit = 80 # Change here if needed

Convert to Celsius using standard formula

temp_celsius = (temp_fahrenheit - MELTING_POINT_FAHRENHEIT) * RATIO

Output the temperature in Celsius
print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

« We specify the temperature that we want to convert in Line 24

 We want to make the program more interactive by prompting the user to
enter the temperature

« We can do this using the input() function

 The code is in the file conversion_interactive_prelim.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G WS5 slide 52

First attempt

The temperature in Fahrenheit to be converted
temp_fahrenheit = input('‘Please enter a temperature in Fahrenheit: ')

Convert to Celsius using standard formula

temp_celsius = (temp_fahrenheit — MELTING_POINT_FAHRENHEIT) x RATIO

Output the temperature in Celsius
print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

e Replace line 24 in
conversion_interactive_prelim.py by the one
shown above

e The expression that the user enters will be
assigned to the variable temp_fahrenheit

e Let us run and see

ENGG1811 © UNSW, CRICOS Provider No: 00098G WS5 slide 53

What is the error?

* To understand why there is an error. We look at
the variable explorer

Name A Type Size Value

temp_fahrenheit str 1 80

Help File explorer

e The value is 80. That seems correct.
e But, appearance can be a deception.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W5 slide 54

Well, let’s step away. You’ve known for a long
time that a word may have multiple meanings ...

« The word python has two different meanings

e Same spelling but
— Very different contexts
— Very different ways of handling

The temperature in Fahrenheit to be convert
temp_fahrenheit = input('Please enter a tempe

Convert to Celsius using standard formula
temp_celsius = (temp_fahrenheit - MELTING_POI

Output the temperature in Celsius
print(temp_fahrenheit, 'in F = ', temp_celsiu

Meaning 2

Meaning 1

ENGG1811 © UNSW, CRICOS Provider No: 00098G WS5 slide 55

What went wrong

Name A Type Size Value

temp_fahrenheit |str |1 80

This variable is This line of code tries
a string to subtract a number

from a string

The temperature in Fahrenheit to be converted
temp_fahrenheit = input('Please enter a temperature in Fahrenheit: ')

Convert to Celsius using standard formula

temp_celsius = (temp_fahrenheit - MELTING_POINT_FAHRENHEIT) * RATIO

Output the temperature in Celsius

ENGG1811

print(temp_fahrenheit, 'in F = ', temp_celsius, 'in C')

© UNSW, CRICOS Provider No: 00098G WS5 slide 56

Data types

* Python (not the snake, in case you wonder which
meaning it is ©) defines different data types

 Different data types are handled differently
* Why data types? For error checking

In

In

In

Out [

d
5

ENGG1811

(71 :

8] :
Out[8]:

9]:
9

1 S
]: '808080' /////
Name 4 Type Size Value

a =80; s = '80";:

a+ a + a
240 Looks like they are

the same but no!
S + S +

int 1 80
str 1 80

© UNSW, CRICOS Provider No: 00098G W5 slide 57

Python data types

Data type Meaning
Integer No decimal point (+/-)

Floating point With decimal (+/-)
Complex number

String Text

ENGG1811 © UNSW, CRICOS Provider No: 00098G WS5 slide 58

In [19]:

In [20]:
Out[20]:

In [21]:
Out[21]:

Name

n 0o T

ENGG1811

Python data types

b = 80.0; c = complex(1,2)

g{ggib) Can use the
function type() to

type(s) check the data
str type of a variable

int 1 80

float 1 80.0

complex 1 (1+2j)

str 1 80

© UNSW, CRICOS Provider No: 00098G WS slide 59

Data type conversion

* You can convert from one data type to another
— str() converts the input to a string

— Similarly, int() and float()

In [22]:
Out[22]:

In [23]:
Out[23]:

In [24]:

In [25]:
Out[25]:

ENGG1811

S
I80l

type(s)
str

f = float(s)

160.0

In [32]:

In [33]:
Out[33]:

In [34]:
In [35]:

In [36]:
Out[36]:

© UNSW, CRICOS Proviger No : UULYB

p = str(f)

P+p+p
'80.080.080.0'

z1l = 80.5
z2 = int(z1)

Z2
80

VVO Sliue ov

Fixing the program

The temperature in Fahrenheit to be converted
temp_fahrenheit = float(input(‘Please enter a temperature in Fahrenheit: '))

Convert to Celsius using standard formula
temp_celsius = (temp_fahrenheit - MELTING_POINT_FAHRENHEIT) x RATIO

OQutput the temperature in Celsius
print(temp_fahrenheit, ‘in F = ', temp_celsius, 'in C')

ENGG1811 © UNSW, CRICOS Provider No: 00098G WS5 slide 61

ENGG1811

Mathematical functions

Standard Python has a limited set of maths
operators: +-*/ /[% **

Sometimes you want to use sin(), cos(), log(),
exp(), etc.

In Python, these operations are found in the
math library

© UNSW, CRICOS Provider No: 00098G W4 slide 62

Example: Solving quadratic equation

* We will write a program to solve the quadratic
equation

ax’ +bxr +c=0

 using the formula

—b + \/b2 — 4ac
20

* We will use a function to compute the square
root from the math library

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 63

quadratic_prelim.py

Python code
Import the math module - need that for square root
import math

Specify the coefficients of the quadratic equation
Enter coefficients here

Compute the square root of the discriminant
root_discriminant = math.sqrt(b xx 2 — 4 x a x c)

Compute the root
rootl = (-b + root _discriminant) / (2 x a)
root2 (-b — root_discriminant) / (2 * a)

Display the answers
print('The roots are ', rootl, ' and ', root2)

* You must import the math library before using its functions

* Line 37 shows the usage of math.sqgrt() which computes the
square root

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 64

The math library

* The math library also contains functions for:

— Trigonometry and radian/degree conversion
« Radian is assumed

— Exponential and log
— Etc.

* The file math_examples.py contains examples
— Let us try some examples in the console

* For a complete list, see
— https://docs.python.org/3/library/math.html

— https://www.programiz.com/python-
programming/modules/math

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 65

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
https://www.programiz.com/python-programming/modules/math
https://www.programiz.com/python-programming/modules/math
https://www.programiz.com/python-programming/modules/math
https://www.programiz.com/python-programming/modules/math

Summary

« Spyder development environment

— iConsole, editor, program execution, saving files
* Programming

— Arithmetic operators and precedence

— Variables and naming convention

— Assignment operator =

— Statements are executed one after another in a
computer program

— Writing computer programs in a file
— Data types and their conversion
— The math library

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 66

