INTRODUCTION TO REQUIREMENT
ENGINEERING IN SENG2021

BY:
MORTADA AL-BANNA

LN
\

O

AGENDA

|(Why requirement Engineering

| Project Scoping(Problem Statement) W

Features and how to present them

User Stories

DISCLAIMER

® Part of the material presented here are taken from the SENG1031 lectures

presented by Sci Prof. Boualem Benatallah.

®* No “Actual” software code was hurt during the creation of these slides.

A\N

L W

<
-

-y
-
AT

|

e —

How the customer How the System Analyst How the Programmer How the Business
explained it designed it wrote it Consultant described it

How the project What operations How the customer How it was supported What the customer
was documented installed was billed really needed

Image Curtesy of https://medium.com /omarelgabrys-blog /requirements-engineering-introduction-part-1-
6d49001526d3

SOME REFRESHERS (REF1 & REF2)

* User Requirement: criteria/constraints to satisfy (natural language, other

artefacts / use cases), problem statements / customer needs

* System Requirement: detailed descriptions (functions, constraints), services
and operational constraints, interface /contract between
customer/development team (e.g., class diagrams, state diagrams, functions,

pre/post conditions, business rules)

®* Functional Requirement: the main functions provided by the software (e.g.,

send messages, receive messages, add courses)

®* Non Functional Requirement: the constrains on the functions provided by the

software (e.g., security, performance, reliability)

PROBLEM STATEMENT (PART1)

®* Few sentences (e.g., one or 2) to describe specific user /customer

needs
® |dentify a problem from customer perspective
® Understand the current state of the world

®* Problem statements are not bug reports (the problems may never
been raised before, problems were not in the requirements of
existing projects), focus on identifying new requirements (not bug

fixes, which errors of implementation not missing requirements)

PROBLEM STATEMENT (PART2)

®* Problem statements can be enriched with references, supporting materials
(e.g., market research reports, videos, government policy statements), but

should be made clear and separate from supporting artefacts

®* Problem statements are input to what is called feature statements or
scenarios. Features / scenarios describe the state of the world when the
project is done (e.g., the project will support category, interests based search
in addition to keyword search, the project will support search across 4 most

popular MOOC platforms).

EXAMPLE OF A GOOD PROBLEM STATEMENT

® There is no feedback system for a particular course.
® There is no reputation / popularity system for users or course instructors.

® There is no general forum for the students to interact with each other, only a

forum for each individual course.
® There is no Intuitive notification system.

® Major social hubs are not integrated into the platform

N:-ISE TO SIGNAL

Rob Cottingham

We’re brainstorming here,
and there are no dumb ideas.
But if we weren’t brainstorming,
that would have been
a really, really dumb idea.

Brainstorming

Curtesy of https://shonaliburke.com/friday-funny-brainstorming /

FEATURES (REF3)

® Describe a way to solve a problem mentioned in the problem statement
® Behaviour oriented : focus on what the software will do when delivered

* Customer / Engineering collaboration : requirements created jointly between

customer and engineering team, using, controlled natural language
® Simple to understand, testable, have business value

®* Used as input in software management tools, e.g., to review, to generate

input /output test cases, to monitor project progress

® Problem statement VS feature: current state of the world VS the state of the

world when the project is delivered.

FEATURE EXAMPLE

: MOQOC system (called
myMOOQOC) provides access to courses by groups of people

involved in those courses.

: As a teacher, | can access myMOOC to search and

mandage courses

COMPLEX FEATURES

®* Complex feature: As a student, | can search courses, enrol in a

course or drop it (complex feature)
® Concrete /small features
1: As a student, | can search courses by tags
2: As a student, | can enrol in a course

3: As a student, | can drop a course

FEATURES NOTATION

®* Based on Connextra notation, a feature is described as

follows : ’ I

Feature

As a
So that

| want to

l So that | c

r

| want to search Tutors by their reputation scores

GOOD FEATURES

®* SMART principles are one way to write good features
stands for:

— pecific

— easurable

— chievable

— elevant

— ime-Boxed

EXAMPLES OF GOQOD VS BAD FEATURES (PART1)

® Specific

— Example of a vague story:
Student can search for a tutor

— Example of a specific story:

Student can search for a lecturer by their reputation score

EXAMPLES OF GOOD VS BAD FEATURES (PARTZ2)

®* Measurable

— Example of a non-measurable story:
Searching tutors should be fast.

— Example of a measurable story:

When searching for a tutor, the results should appear

within 5 seconds.

EXAMPLES OF GOOD VS BAD FEATURES (PART3)

®* Time-Boxed (time budget, may be complex, prioritize,
reschedule, re-negotiate dead-lines, re-negotiate features,

scale down)
®* Achievable

— Realistic in terms of time assigned (can be implemented in one

iteration. If not may need to decompose into smaller features)

EXAMPLES OF GOQOD VS BAD FEATURES (PARTA4)

® Relevant:

® resolving one of the problems in the problem statement

* Adding business value

®* Example:

®* Why searching for reputable tutors? To maximize quality of courses.

USER STORIES (REF1 &REF2)

® User story: feature + scenarios

® Stories: concept in HCI, paper cards, easy to understand and

manipulate, used for brain storming, prioritizing

® Stories: few sentences written in non technical terms, yet ready to
be used as input for various project tasks, focus on stakeholder

perspective

®* Will refine features in future phases of the project (e.g., use case

diagrams, input /output interfaces, Ul prototypes)

STORIES (CONTIN'D)

®* Captures a feature rationale (not detailed requirements) n Business

value (customer oriented, a feature that customer needs)
* Small (few person / month to deliver the feature)
® Independent functional requirements (no overlaps between stories)
® Testable by customer

® Effective project management (more accurate estimate of progress,

iterative development cycle, manage priorities)

\

S EXTREME PROGRAMMING

AND EACH FEATURE
NEEDS TO HAVE
WHAT WE CALL A
“USER STORY."

I CAN'T GIVE YOU
ALL OF THESE
FEATURES IN THE
FIRST VERSION.

scottadams@aocl.com

www.dilbert.com

"
=
mr.
-
A
1%
]
E
sl
L]
aQ
[
a
-
f
9
18
k)
a
-
=
=
o
a
=
3|
™,
]
o
-

OKAY,HERE'S A
STORY: YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUIN YOUR LIFE.

SCENARIO

® A scenario

— Explain how a single feature is used.

— consists of a set of (3 to 8) steps.

® Each step of a scenario starts with a keyword, i.e.,
— GIVEN (pre-condition/state)

— WHEN (Action /Event)

— THEN (Transition / consequence of action)

— AND (conjunction)

SCENARIO EXAMPLE

® Feature: student can search tutors by reputation score.

® Scenario: Search Tutors by reputation (cloud be used to generate Ul

interactions /mock-ups, state machine)
GIVEN | am on myMOOC home page
WHEN | click on “search for a Tutor”
THEN | should be on “search for a Tutor” page
WHEN [fill in “reputation” higher than” “0.9”
AND | press “Search” button

THEN | should see all tutors whose reputation score higher than 0.9

WRITING GOOD USER STORIES

®* Write for broad audience: e.g., people who are not in your team. Will

they understand?
®* Complementary to other techniques, e.g., SMART user stories

®* Reuse/analogy: e.g., search and analysis of similar services/products,

reuse of feature descriptions (at least style) from previous projects.

® Avoid obscure language: e.g. technical jargon (unless internal project
and agreed upon by team), mixing requirements with

background /detailed design documentation

PROTOTYPING

*Visual elements (Ul mostly)
*Web, mobile, desktop, APlIs
®*Focus on interactions with actors

*Low fidelity (sketching), high fidelity (mock-ups,

wireframes)

WHAT IS PROTOTYPE ¢
®* Whiteboard sketching

® Paper / pencil sketching, post-its

®* Mockups (domain specific and general tools, e.g., photoshop, balsamiq,

InVision, Visio, ppt)

®* HTML / CSS (could be time consuming as it requires building details of Ul

elements, both content, state, look, style).

* Software dev. productivity is improving (reuse /templates/ themes / examples

/ code generation) but Ul dev is still tedious task)

WHY PROTOTYPING ¢

®* Feedbacks from customers
®* Save time, cost (cheaper to build a prototype than the real system)

® |t is easier and easier to build the real Ul (e.g., HTML/CSS), but

still cheaper to start with prototypes

®* More applicable to features where actors use Ul elements to

interact with the system

® But in the new era of back end as a service, prototyping will also

be used to some extend for APIls, apps as the actors.

FIDELITY IN PROTOTYPING

® Low fidelity:

— Called Lo-Fi Ul (sketches, concept from HCl community)
— Engage non technical users

— Kinder-garden tools (papers, crayons sketches)

® High fidelity?

- Detailed Ul elements (wireframes, mockups)

- Look and feel of real system

LO-FI Ul: STORYBOARDS

®* Sketches: sketch of feature Ul

® Features (steps in a use case) — Ul sketches: explicit relationship,

can be 1 to 1, 1 to many, many to 1

® Ul involve interactions with actors, transitions from Ul components
to other to understand a complex Ul involving several Ul

components
® Storyboards: a concept borrowed from filmakers

® Storyboards in film making: sequence of scenes (called a script),

focus on interactions (not scene details)

Ul STORYBOARDS

® Film storyboards: sequence of events/scenes

* Ul storyboards: trees/graphs of Ul screens (use cases involve

sequences, decision points, alternative flows)

® Various notations can used to represent Ul storyboards (e.g., UML
activity diagrams, BPMN process models, and even UML state

machines)

® Elements of storyboards: nodes (Ul component sketches including:
pages, parts of pages, input / output forms, popup menus), transitions

(interaction between Ul sketches)

LO-FI - Ul COMPONENT
SKETCH (SOURCE:

REF. 2, ONE
INTERACTION, ONE
STEP)

LO-FI - Ul STORYBOARD (SOURCE: REF. 2, BIG
PICTURE, USE CASE)

| Refen Potatyes
Cveﬁ@& V)& parVIE

T"H'a | S

Reolense Detse @™ 1

ol ‘”’"G

HIGH FIDELITY PROTOTYPES

* Wireframes / mockups (various tools, as an example Lucidchart)

Rotten Potatoes! !

Create new movie

+ Ul INPUT

OF B @
®@ OB

Rating
Release date

Description

MULTI-PAGES Ul COMPONENT

Rotten Potatoes

Rotten Potatoes

All Movies List

The Matrix (1999)

Rating: 5

Title
The Matrix
Star Trek
The Dark Knight

Rating
5
4
4

Rotten Potatoes

[Add New Movie)

Create new movie entry

Movie Title | Star Wars

Rating O10:20

Release date | 7]“

Movie Description

Knight, a cocky pilot, a wookiee and two
droids to save the universe from the

Empire's world-destroying battle-station,

while also attempting to rescue Princess

Leia from the evil Darth Vader. E]

Luke Skywalker joins forces with a Jedi %

HOTSPOT: TRANSITION, SOURCE: “PAGE”, TARGET:
“"PAGE”

' Lucidchart

Hotspot Actions:

Link to Page v | |-- Choose a Page -
-- Choose an Action --

Toggle State d Action

St Lucidchart
Hide State

External Link Hotspot Actions:
Link to Email

| Link to Page ¥ | | Create-New

Add Action

Cancel

GOOD PROTOTYPES - GUIDELINES

® Select customer representative (through workshops, research, customer site

visits, etc)
® Start from features and use cases
® Start from basic flows, then complex flow (alternative flows)

® Use reviews to improve (project leader, business analyst, developers, customer

perspectives — business, customer, engineering)
® Identify issues, resolve issues, iterate

® Spend short time on lo fi sketches, mockups for final Uls (input to code —

HTML/CSS)

REFERENCES

® (Ref. 1) Scott Berkun. The art of project management. O'Reilly 2005

® (Ref. 2) Leszek A. Maciaszek: Requirements analysis and system design (2.
ed.), Addison-Wesley, 2005

® (Ref. 3) Software Engineering. lan Sommerville, Addison-Wesley, 9. ed., 2010,

® (Ref. 4) inGenius: A Crash Course on Creativity, by Tina Seelig

FIRST DELIVERABLE

® Describe few problem statements you are going to solve in your

project

® |dentify the features that you are going to implement to solve the

problems
® Describe user stories
® Low Fidelity prototype

® High Fidelity Prototype (Ul elements and how they will be interacting)

FIRST DELIVERABLE (CONT’D)

®* Group effort.
®* Meeting with mentor to refine ideas and get feedback.

®* A detailed specification will be released soon.

Q&A

