COMP1511 - Programming
Fundamentals

— Term 1, 2020 - Lecture 10 S

What did we cover yesterday?

Debugging

e How to think about different bugs (code errors)
e Some tricks and techniques to remove bugs from our code

Characters

e A new variable type!
e Letters and other symbols

What are we covering today?

Strings
e Words that contain multiple characters
Structs

e Containers that can hold different variable types

Strings
When we have multiple characters together, we call it a string

e Strings in C are arrays of char variables containing ASCIl code
e Strings are basically words, while chars are letters

e Strings have a helping element at the end, a '\0'
e |t's often called the 'null terminator' and it is an invisible character
e This helps us know if we're at the end of the string

Strings in Code

Strings are arrays of type char, but they have a convenient shorthand

// a string is an array of characters

char wordl[] = {'h','e','1",'1",'0","'\0"};
// but we also have a convenient shorthand
// that feels more like words

char word2[] = "hello";

Both of these strings will be created with 6 elements. The lettersh,e,1,1,0
and the null terminator \ 0

h | e I I o | \0

Reading and writing strings
fgets(array[], length, stream) is a useful function for reading strings

It will take up to length number of characters

They will be written into the array

The characters will be taken from a stream

Our most commonly used stream is called stdin, “standard input”

e stdin is our user typing input into the terminal

Reading and writing strings in code

// reading and writing lines of text

char line[MAX LINE LENGTH];
while (fgets(line, MAX LINE LENGTH, stdin) !'= NULL) ({

fputs (line, stdout);
}

e fputs(array, stream) works very similarly to printf

e It will output the string stored in the array to a stream

e We can use stdout wWhich is our stream to write to the terminal

Helpful Functions in the String Library

<string.h> has access to some very useful functions

Note that char* s is equivalent to char s[]

int strlen(char* s) -return the length of the string (not including \0)
strcpy and strncopy - copy the contents of one string into another
strcat and strncat - attach one string to the end of another

stremp and variations - compare two strings

strchr and strrchr - find the first or last occurrence of a character

And more...

Whooaaah We're Halfway There...

We're going to use a bit of everything we've seen so far in COMP1511

This program is a word game

e Itwill read in a string from the user
e |t will then read in another string from the user and tell us how many of

the letters from the second appear in the first
e This will use if, while, arrays (of characters), functions and pointers

Where will we start?

A simple version to begin with

e Let'sreadin aline of characters
e Thenread in asingle character and see whether it's in the line or not

Read in a line of characters (a string)

We can use a nice library function here

e fgets () will grab an entire line from standard input
e We can set up a maximum line size as well

#define MAX LINE_ LENGTH 100

int main(void) {
char line[MAX LINE LENGTH];
fgets(line, MAX LINE LENGTH, stdin);

Read in a single character

Starting simple, we can take a character as input

e getchar () will read a single character from standard input
e Remember that we'll be using int as our type for individual characters
e Here we can loop and continually get characters until input ends

int inputChar;

inputChar = getchar();

while (inputChar !'= EOF) {
inputChar = getchar()

}

Break Time

Social Distancing and Isolation

We're not going to be seeing each other much in person

We can help slow the spread of the coronavirus by staying home

If you need any help with COMP1511 especially now that it's remote,
please let us know!

Remember that Isaac Newton (in his early 20s) spent a year isolated from
the Black Plague

In that time he discovered important theories related to the fundamental
nature of light and gravity. | expect similar results from you :P

A Function to find a character in a string

Loop through the string, testing for a character

e We've done this kind of loop before with other types!

int testChar (char ¢, char *line) {
int charCount = 0;
int 1 = 0;
while (i < MAX LINE LENGTH && line[i] !'= '\0') {
if (line[i] == c) {
charCount++;
}
i++;
}

return charCount;

Simple functionality... how well is it working?

What tests should we run at this point?

e Look for syntax errors using our compiler (dcc)
e Look for logical errors by testing with different inputs

We might need to add in some extra outputs

e |f we're getting strange behaviour, we can confirm our guesses
e We might learn more about what's going on in our program

What are these extra characters?

Maybe we need to check what those characters are

e Some print statements can help here

int inputChar;
inputChar = getchar() ;

while (inputChar !'= EOF) {
printf ("Main loop running, readChar is %c.\n", inputChar);

printf ("%d\n", testChar (inputChar, line));
inputChar = getchar() ;

Dealing with little issues

We're reading newlines (\n) as characters!

Let's remove the newlines from both our line and our inputs

We'll use a library function, strlen () to find the end of a string

To use strlen (), we will need the string.h library, which we will include
We'll then replace the \n with \0 which will end the string early

Removing newlines

Removing a \n at the end of a string:

int main(void) {
char line[MAX LINE LENGTH];
fgets(line, MAX LINE LENGTH, stdin);
int length = strlen(input);
input[length - 1] = '\0';

Ignoring the \n while reading input:

inputChar = getchar() ;

if (inputChar == '\n') {
inputChar = getchar() ;

}

Expanding on the functionality

Our first attempt just checked for single letters

Now we expand to words!

Read in another word

Check every letter in the word for whether it appears in the phrase
Then report back how many letters matched

Some good reasons to use functions!

e Readingin words is now duplicated
e We can reuse our testChar() function to see if letters match

A function to read a line

This function also removes the \n that fgets will give us

void readString(char *input) ({
fgets (input, MAX LINE LENGTH, stdin);
int length = strlen(input) ;
input[length - 1] = '"\0';

A function to count letters

Counts how many letters from one string appear in the other

This function also uses another function!

int numLetterMatches (char *word, char *line) {

int 1 = 0;
int matchCount = 0;
while (i < MAX LINE LENGTH && word[i] !'= '\0') {
if (testChar (word[i], line)) {
matchCount++;
}
i++;

}

return matchCount;

A simple word game

What coding concepts have we used there that might come in handy?

e Characters and Strings (note that we'll never need to memorise the ASCII
table to work with characters)

Using libraries and provided functions

Loops on strings (using the Null Terminator \0)

Writing multiple functions and using functions within functions

A lot of our basic C concepts like if, while and array indexing

Structs

A new way of collecting variables together

Structs (short for structures) are a way to create custom variables
Structs are variables that are made up of other variables

They are not limited to a single type like arrays
They are also able to name their variables

Structs are like the bento box of variable collections

Before we can use a struct...

Structs are like creating our own variable type

e We need to declare this type before any of the functions that use it
e We declare what a struct is called and what the fields (variables) are

struct performer {
char name[MAX LENGTH] ;
char description[MAX LENGTH] ;
int rank;

Creating a struct variable and accessing its fields

Declaring and populating a struct variable

e Declaring a struct: "struct structname variablename;"
e Use the. to access any of the fields inside the struct by name

int main(void) {

struct performer rm;
strcpy (rm.name, "Rap Monster");

strcpy (rm.description, '"Leader");
rm.rank = 1;

rintf ("%s's description is: %s.\n", rm.name, rm.description);
14 14

Accessing Structs through pointers

Pointers and structs go together so often that they have a shorthand!

struct performer *rapper = &rm;

// knowledge of pointers suggests using this
*rapper.rank = 100;

// but there's another symbol that automatically
// dereferences the pointer and accesses a field
// inside the struct

rapper->rank = 100;

Structs as Variables

Structs can be treated as variables

e Yes, this means arrays of structs are possible

e |t also means structs can be some of the variables inside other structs

e |n general, it means that once you've defined what a struct is, you use it
like any other variable

What did we learn today?

Characters and Strings

e Expanding our variables to letters and words
e A code example to show some of the use of strings
e Using libraries to make strings easier

Structs

e C(Collections of variables of different types

