
COMP9444
Neural Networks and Deep Learning

8a. Hopfield Networks and

Boltzmann Machines

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 1

Outline

� Content Addressable Memory

� Hopfield Network

� Generative Models

� Boltzmann Machine

� Restricted Boltzmann Machine

� Deep Boltzmann Machine

� Greedy Layerwise Pretraining

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 2

Content Addressable Memory

Humans have the ability to retrieve something from memory when

presented with only part of it.

For example,

To be or not to be, ...

I came, I saw, ...

Can we recreate this in computers?

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 3

Auto-Associative Memory

We want to store a set of images

in a neural network in such a way

that, starting with a corrupted or

occluded version, we can recon-

struct the original image.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 4

Energy Based Models

We can try to define an energy function E(x) in configuration space, in

such a way that the local minima of this energy function correspond to the

stored items.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 5

Constraint Satisfaction Problems

Example: Place n queens on an n-by-n chessboard in such a way that no

two queens are attacking each other.

We assume there is exactly one queen on each column, so we just need to

assign a row to each queen, in such a way that there are no “conflicts”.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 6

Local Search

Some algorithms for solving Constraint Satisfaction Problems work by

“Iterative Improvement” or “Local Search”.

h = 5 h = 2 h = 0

These algorithms assign all variables randomly in the beginning (thus

violating several constraints), and then change one variable at a time,

trying to reduce the number of violations at each step.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 7

Hill-Climbing by Min-Conflicts

2

2

1

2

3

1

2

3

3

2

3

2

3

0

� Variable selection: randomly select any conflicted variable

� Value selection by min-conflicts heuristic

◮ choose value that violates the fewest constraints

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 8

Hill-Climbing

The term Hill-climbing suggests climbing up to regions of greater

“fitness”.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 9

Inverted View

When we are minimizing violated constraints, it makes sense to think of

starting at the top of a ridge and climbing down into the valleys.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 10

Energy Function for Images

Consider the set of all black-and-white images with d pixels, where each

configuration x is an image x = {x j}1≤ j≤d , with

x j =







−1, if pixel j is black,

+1, if pixel j is white.

We want to construct an energy function of the form

E(x) =−(
1

2
∑
i, j

xi wi j x j +∑
i

bi xi)

such that the stored images {x(k)}1≤k≤p are local minima for E(x).

The idea is to make wi j positive if the two pixels xi and x j tend to have the

same color, and make wi j negative if pixels xi and x j tend to have opposite

colors (when averaged across the set of stored images).

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 11

Hopfield Network

Consider a state space where each configuration (state) consists of a vector

x = {x j}1≤ j≤d , with each x j = either +1 or −1

We can define an energy function as

E(x) =−(
1

2
∑
i, j

xi wi j x j +∑
i

bi xi)

We normally assume wii = 0 for all i, and wi j = w ji for all i, j.

These look very much like the weights and biases of a neural network.

But, it differs from the feedforward networks we are used to.

� The components (neurons) xi do not vary continuously, but instead

take only the discrete values −1 and +1

� neurons are iteratively updated, either synchronously or asyn-

chronously, based on the current values of the neighboring neurons

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 12

Hopfield Network

E(x) =−(
1

2
∑
i, j

xi wi j x j +∑
i

bi xi)

Start with an initial state x and then repeatedly try to “flip” neuron

activations one at a time, in order to reach a lower-energy state. If we

choose to modify neuron xi, its new value should be

xi←















+1, if ∑ j wi j x j +bi > 0,

xi , if ∑ j wi j x j +bi = 0,

−1, if ∑ j wi j x j +bi < 0.

This ensures that the energy E(x) will never increase. It will eventually

reach a local minimum.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 13

Hopfield Network

Suppose we want to store p items {x(k)}1≤k≤p into a network with

d neurons. We can set bi = 0 and

wi j =
1

d

p

∑
k=1

x
(k)
i x

(k)
j

In other words, wi j = (−1+ 2c)p/d, where c is the fraction of training

items for which x
(k)
i = x

(k)
j .

This is known as Hebbian learning, by analogy with a process in the brain

where the connection strength between two neurons increases when they

fire simultaneusly or in rapid succession.

One consequence of this choice for bi and wi j is that, if x is a stable

attractor, then the negative image (−x) is also a stable attractor.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 14

Hopfield Network

Once the items are stored, then for any item x = x(l) we have

d

∑
j=1

wi j x
(l)
j =

1

d

d

∑
j=1

p

∑
k=1

x
(k)
i x

(k)
j x

(l)
j = x

(l)
i +

1

d
∑

j
∑
k 6=l

x
(k)
i x

(k)
j x

(l)
j

The last term on the right is called the crosstalk term, representing

interference from the other stored items. If, for all i, the crosstalk term is

smaller than 1 in absolute value (or it has the same sign as x
(l)
i ) then xi will

not change and x(l) will be a stable attractor.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 15

Hopfield Network

� The number of patterns p that can be reliably stored in a Hopfield

network is proportional to the number of neurons d in the network.

� A careful mathematical analysis shows that if p/d < 0.138, we can

expect the patterns to be stored and retrieved successfully.

� If we try to store more patterns than these, additional, “spurious”

stable states may emerge.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 16

Generative Models

The Hopfield Network is used to store specific items and retrieve them.

What if, instead, we want to generate new items, which are somehow

“similar” to the stored items, but not quite the same.

This is known as a generative model.

The first attempt to do this using neural networks was the Boltzmann

Machine.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 17

Ising Model of Ferromagnetism

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 18

Boltzmann Machine (20.1)

The Boltzmann Machine uses exactly the same energy function as the

Hopfield network:

E(x) =−(∑
i< j

xi wi j x j +∑
i

bi xi)

The Boltzmann Machine is very similar to the Hopfield Network, except that

� components (neurons) xi take on the values 0,1 instead of −1,+1

� used to generate new states rather than retrieving stored states

� update is not deterministic but stochastic, using the sigmoid

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 19

Boltzmann Distribution

The Boltzmann Distribution is a probability distribution over a state space,

given by

p(x) =
e−E(x)/T

Z

� E(x) is an energy function

� T is a temperature parameter

� Z is the partition function which ensures that ∑
x

p(x) = 1

In most cases, it is too complicated to compute the partition function

directly. But, we can sample from the distribution by an iterative process

using the relative probability of neighboring states.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 20

Gibbs Sampling (16.3)

Consider a state x for which a particular component xi is equal to 1.

Suppose we change xi to 0 but leave all other components fixed, to

produce a new state x′. Let ∆E = E(x′)−E(x) be the difference in energy

between the two states. Then

p(x′) = p(x)e−∆E/T

Therefore, if all other components stay fixed, the probability of xi taking

the value 1 or 0 must be

p(xi = 1) =
p(x)

p(x)+ p(x′)
=

1

1+ e−∆E/T

p(xi = 0) = 1− p(xi = 1) =
1

1+ e+∆E/T

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 21

Boltzmann Machine

The Boltzmann Machine operates similarly to a Hopfield Network, except

that there is some randomness in the neuron updates.

In both cases, we repeatedly choose one neuron xi and decide whether or

not to “flip” the value of xi.

For the Hopfield Network, xi will change from 1 to 0 only if ∆E < 0, and

will change from 0 to 1 only if ∆E > 0, i.e. we never move to a higher

energy state. For the Boltzmann machine, we instead choose xi = 1 with

probability

p =
1

1+ e−∆E/T

In other words, there is some probability of moving to a higher energy

state (or remaining in a higher energy state when a lower one is available).

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 22

Boltzmann Machine

p(xi→ 1) =
1

1+ e−∆E/T

� if this process is repeated for many iterations, we will eventually

obtain a sample from the Boltzmann distribution

� when T → ∞, the value of 0 or 1 is always chosen with equal

probability, thus producing a uniform distribution on the state space

� as T → 0, the behaviour becomes similar to that of the Hopfield

Network (never allowing the energy to increase)

� the Temperature T may be held fixed, or it may start high and be

gradually reduced (known as Simulated Annealing)

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 23

Boltzmann Machine Limitations

The Boltzmann Machine is limited in that the probability of each unit must

be a linearly separable function of the surrounding units. It becomes more

powerful if we make a division between “visible” units v and “hidden”

units h.

The visible and hidden units roughly correspond to input and hidden units

in a feedforward network. The aim is that the hidden units should learn

some hidden features or “latent variables” which help the system to model

the distribution of the inputs.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 24

Restricted Boltzmann Machine (16.7)

If we allow visible-to-visible and hidden-to-hidden connections, the

network takes too long to train. So we normally restrict the model by

allowing only visible-to-hidden connections.

This is known as a Restricted Boltzmann Machine.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 25

Restricted Boltzmann Machine

� inputs are binary vectors

� two-layer bi-directional neural network

◮ visible layer v

◮ hidden layer h

� no vis-to-vis or hidden-to-hidden connections

� all visible units connected to all hidden units

E(v,h) =−(∑
i

bi vi +∑
j

c j h j +∑
i, j

vi wi j h j)

� trained to maximize the expected log probability of the data

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 26

Conditional Distributions (20.2)

Because the input and hidden units are decoupled, we can calculate the

conditional distribution of h given v, and vice-versa.

p(h |v) =
p(v,h)

p(v)
=

1

p(v)

1

Z
exp(∑

i

bi vi +∑
j

c j h j +∑
i, j

vi wi j h j)

=
1

Z′
exp(∑

j

c j h j +∑
i, j

vi wi j h j)

It follows that

p(h |v) = ∏
j

p(h j |v) = ∏
j

σ
(

(2h−1)⊙ (c+W Tv)
)

j

p(v |h) = ∏
i

p(vi |h) = ∏
i

σ
(

(2v−1)⊙ (b+W h)
)

i

where ⊙ is component-wise multiplication and σ(s) = 1/(1+ exp(−s)) is

the sigmoid function.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 27

Alternating Gibbs Sampling

With the Restricted Boltzmann Machine, we can sample from the

Boltzmann distribution as follows:

choose v0 randomly

then sample h0 from p(h |v0)

then sample v1 from p(v |h0)

then sample h1 from p(h |v1)

etc.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 28

Contrastive Divergence (18.2)

RBM can be trained by Contrastive Divergence

� select one or more positive samples {v(k)} from the training data

� for each v(k), sample a hidden vector h(k) from p(h |v(k))

� generate “fake” samples {ṽ(k)} by alternating Gibbs sampling

� for each v̂(k), sample a hidden vector h̃(k) from p(h | ṽ(k))

� Update {bi},{c j},{wi j} to increase log p(v(k),h(k))− log p(ṽ(k), h̃(k))

bi← bi + η(vi− ṽi)

c j← c j + η(h j− h̃ j)

wi j← wi j +η(vi h j− ṽi h̃ j)

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 29

Quick Contrastive Divergence

It was noticed in the early 2000’s that the process can be sped up by taking

just one additional sample instead of running for many iterations.

� v0,h0 are used as positive sample, and v1,h1 as negative sample

� this can be compared to the Negative Sampling that was used with

word2vec – it is not guaranteed to approximate the true gradient, but

it works well in practice

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 30

Deep Boltzmann Machine (20.4)

The same approach can be applied iteratively to a multi-layer network.

The weights from the input to the first hidden layer are trained first.

Keeping those fixed, the weights from the first to the second hidden layer

are trained, and so on.

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T2 Boltzmann Machines 31

Greedy Layerwise Pretraining

One application for the deep Bolzmann machine is greedy unsupervised

layerwise pretraining.

Each pair of layers in succession is trained as an RBM.

The resulting values are then used as the initial weights and biases for a

feedforward neural network, which is then trained by backpropagation for

some other task, such as classification.

For the sigmoid or tanh activation function, this kind of pre-training leads

to a much better result than training directly by backpropagation from

random initial weights.

COMP9444 c©Alan Blair, 2017-20


