
COMP9444 20T3 Perceptrons 2

Structure of a Typical Neuron

COMP9444 c©Alan Blair, 2017-20

COMP9444
Neural Networks and Deep Learning

1c. Perceptrons

Textbook, Section 1.2

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 3

Biological Neurons

The brain is made up of neurons (nerve cells) which have

� a cell body (soma)

� dendrites (inputs)

� an axon (outputs)

� synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshhold an action potential

(electrical pulse) is sent along the axon to the outputs.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 1

Outline

� Neurons – Biological and Artificial

� Perceptron Learning

� Linear Separability

� Multi-Layer Networks

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T3 Perceptrons 6

Transfer function

Originally, a (discontinuous) step function was used for the transfer

function:

g(s) =
{ 1, if s≥ 0

0, if s < 0

(Later, other transfer functions were introduced, which are continuous and

smooth)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 4

Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

� inputs edges, each with some weight

� outputs edges (with weights)

� an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).

The input function is the weighted sum of the activation levels of inputs.

The activation level is a non-linear transfer function g of this input:

activationi = g(si) = g(∑
j

wi jx j)

Some nodes are inputs (sensing), some are outputs (action)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 7

Linear Separability

Question: what kind of functions can a perceptron compute?

x

x

1

2

Answer: linearly separable functions

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 5

McCulloch & Pitts Model of a Single Neuron

x1

x2

Σ ✲ g ✲

1

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✁
✁
✁
✁✁✕

w1

w2

w0=-th

s
g(s)

s = w1x1 +w2x2−th

= w1x1 +w2x2 +w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T3 Perceptrons 10

Rosenblatt Perceptron

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 8

Linear Separability

Examples of linearly separable functions:

AND w1 = w2 = 1.0, w0 =−1.5

OR w1 = w2 = 1.0, w0 =−0.5

NOR w1 = w2 =−1.0, w0 = 0.5

Q: How can we train it to learn a new function?

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 11

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 +w2x2 +w0

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0 +η

so s ← s+η(1+∑
k

x2
k )

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k )

otherwise, weights are unchanged. (η > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,

as long as they are linearly separable.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 9

Rosenblatt Perceptron

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T3 Perceptrons 14

Training Step 2

x

2

1

x

(2,1)

0.1 x1−0.1 x2−0.2 > 0

w1 ← w1 +η x1 = 0.3

w2 ← w2 +η x2 = 0.0

w0 ← w0 +η = −0.1

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 12

Perceptron Learning Example

x1

x2

Σ→ (+/−) ✲

1

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✁
✁
✁
✁✁✕

w1

w2

w0

w1 x1 +w2 x2 +w0 > 0

learning rate η = 0.1

begin with random weights

w1 = 0.2

w2 = 0.0

w0 =−0.1

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 15

Training Step 3

x

2

1

x

(1.5,0.5)

(2,2)

0.3 x1 +0.0 x2−0.1 > 0

3rd point correctly classified,

so no change

4th point:

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.2

w0 ← w0−η = −0.2

0.1 x1−0.2 x2−0.2 > 0

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 13

Training Step 1

x

2

1

x

(1,1)

0.2 x1 +0.0 x2−0.1 > 0

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.1

w0 ← w0−η = −0.2

COMP9444 c©Alan Blair, 2017-20



COMP9444 20T3 Perceptrons 18

Multi-Layer Neural Networks

XOR

NOR

AND NOR

−1

+1

+1 −1
−1.5

−1

−1

+0.5

+0.5

Problem: How can we train it to learn a new function? (credit assignment)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 16

Final Outcome

x

x

1

2

eventually, all the data will be

correctly classified (provided

it is linearly separable)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 19

Historical Context

In 1969, Minsky and Papert published a book highlighting the limitations

of Perceptrons, and lobbied various funding agencies to redirect funding

away from neural network research, preferring instead logic-based

methods such as expert systems.

It was known as far back as the 1960’s that any given logical function

could be implemented in a 2-layer neural network with step function

activations. But, the the question of how to learn the weights of a

multi-layer neural network based on training examples remained an open

problem. The solution, which we describe in the next section, was found

in 1976 by Paul Werbos, but did not become widely known until it was

rediscovered in 1986 by Rumelhart, Hinton and Williams.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Perceptrons 17

Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.

COMP9444 c©Alan Blair, 2017-20


