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Structure of a Typical Neuron
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1c. Perceptrons

Textbook, Section 1.2
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Biological Neurons

The brain is made up of neurons (nerve cells) which have

� a cell body (soma)

� dendrites (inputs)

� an axon (outputs)

� synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshhold an action potential

(electrical pulse) is sent along the axon to the outputs.
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Transfer function

Originally, a (discontinuous) step function was used for the transfer

function:

g(s) =
{ 1, if s≥ 0

0, if s < 0

(Later, other transfer functions were introduced, which are continuous and

smooth)
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Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

� inputs edges, each with some weight

� outputs edges (with weights)

� an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).

The input function is the weighted sum of the activation levels of inputs.

The activation level is a non-linear transfer function g of this input:

activationi = g(si) = g(∑
j

wi jx j)

Some nodes are inputs (sensing), some are outputs (action)
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Linear Separability

Question: what kind of functions can a perceptron compute?

x

x

1

2

Answer: linearly separable functions
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McCulloch & Pitts Model of a Single Neuron
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s
g(s)

s = w1x1 +w2x2−th

= w1x1 +w2x2 +w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function
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Rosenblatt Perceptron
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Linear Separability

Examples of linearly separable functions:

AND w1 = w2 = 1.0, w0 =−1.5

OR w1 = w2 = 1.0, w0 =−0.5

NOR w1 = w2 =−1.0, w0 = 0.5

Q: How can we train it to learn a new function?
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Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 +w2x2 +w0

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0 +η

so s ← s+η(1+∑
k

x2
k )

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k )

otherwise, weights are unchanged. (η > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,

as long as they are linearly separable.
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Rosenblatt Perceptron
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Training Step 2

x

2

1

x

(2,1)

0.1 x1−0.1 x2−0.2 > 0

w1 ← w1 +η x1 = 0.3

w2 ← w2 +η x2 = 0.0

w0 ← w0 +η = −0.1
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Perceptron Learning Example

x1

x2

Σ→ (+/−) ✲
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w1

w2

w0

w1 x1 +w2 x2 +w0 > 0

learning rate η = 0.1

begin with random weights

w1 = 0.2

w2 = 0.0

w0 =−0.1
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Training Step 3

x

2

1

x

(1.5,0.5)

(2,2)

0.3 x1 +0.0 x2−0.1 > 0

3rd point correctly classified,

so no change

4th point:

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.2

w0 ← w0−η = −0.2

0.1 x1−0.2 x2−0.2 > 0
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Training Step 1

x

2

1

x

(1,1)

0.2 x1 +0.0 x2−0.1 > 0

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.1

w0 ← w0−η = −0.2
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Multi-Layer Neural Networks

XOR

NOR

AND NOR

−1

+1

+1 −1
−1.5

−1

−1

+0.5

+0.5

Problem: How can we train it to learn a new function? (credit assignment)
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Final Outcome

x

x

1

2

eventually, all the data will be

correctly classified (provided

it is linearly separable)
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Historical Context

In 1969, Minsky and Papert published a book highlighting the limitations

of Perceptrons, and lobbied various funding agencies to redirect funding

away from neural network research, preferring instead logic-based

methods such as expert systems.

It was known as far back as the 1960’s that any given logical function

could be implemented in a 2-layer neural network with step function

activations. But, the the question of how to learn the weights of a

multi-layer neural network based on training examples remained an open

problem. The solution, which we describe in the next section, was found

in 1976 by Paul Werbos, but did not become widely known until it was

rediscovered in 1986 by Rumelhart, Hinton and Williams.
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Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.
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