COMP9444

Neural Networks and Deep Learning

1d. Backpropagation

Textbook, Sections 3.10, 4.3, 5.1-5.2, 6.5.2

Types of Learning (5.1)

- Supervised Learning
- agent is presented with examples of inputs and their target outputs
- Reinforcement Learning
- agent is not presented with target outputs, but is given a reward signal, which it aims to maximize
- Unsupervised Learning
- agent is only presented with the inputs themselves, and aims to find structure in these inputs

Outline

- Supervised Learning (5.1)
- Ockham's Razor (5.2)
- Multi-Layer Networks

Continuous Activation Functions (3.10)
\square Gradient Descent (4.3)

- Backpropagation (6.5.2)

Supervised Learning

- we have a training set and a test set, each consisting of a set of items; for each item, a number of input attributes and a target value are specified.
- the aim is to predict the target value, based on the input attributes.
\square agent is presented with the input and target output for each item in the training set; it must then predict the output for each item in the test set
- various learning paradigms are available:
- Neural Network
- Decision Tree
- Support Vector Machine, etc.

Supervised Learning - Issues

\square framework (decision tree, neural network, SVM, etc.)

- representation (of inputs and outputs)
- pre-processing / post-processing
- training method (perceptron learning, backpropagation, etc.)
generalization (avoid over-fitting)
\square evaluation (separate training and testing sets)

Curve Fitting

Which curve gives the "best fit" to these data?

straight line?

Curve Fitting

Which curve gives the "best fit" to these data?
$f(x)$

Curve Fitting

Which curve gives the "best fit" to these data?

parabola?

COMP9444
© Alan Blair, 2017-20

Curve Fitting

Which curve gives the "best fit" to these data?

4th order polynomial?

Ockham’s Razor (5.2)

"The most likely hypothesis is the simplest one consistent with the data."

Since there can be noise in the measurements, in practice need to make a tradeoff between simplicity of the hypothesis and how well it fits the data.

Curve Fitting

Which curve gives the "best fit" to these data?
$f(x)$

Something else?
COMP9444 ©Alan Blair, 2017-20

Outliers

Predicted Buchanan Votes by County

Butterfly Ballot

Multi-Layer Neural Networks

Problem: How can we train it to learn a new function? (credit assignment)

Recall: Limitations of Perceptrons

Possible solution:
x_{1} XOR x_{2} can be written as: $\left(x_{1} \operatorname{AND} x_{2}\right) \operatorname{NOR}\left(x_{1} \operatorname{NOR} x_{2}\right)$
Recall that AND, OR and NOR can be implemented by perceptrons.
COMP9444
© Alan Blair, 2017-20

Two-Layer Neural Network

Normally, the numbers of input and output units are fixed, but we can choose the number of hidden units.

The XOR Problem

x_{1}	x_{2}	target
0	0	0
0	1	1
1	0	1
1	1	0

- for this toy problem, there is only a training set; there is no validation or test set, so we don't worry about overfitting
- the XOR data cannot be learned with a perceptron, but can be achieved using a 2-layer network with two hidden units
$\overline{\text { COMP9444 ©Alan Blair, 2017-20 }}$

NN Training as Cost Minimization

We define an error function or loss function E to be (half) the sum over all input patterns of the square of the difference between actual output and target output

$$
E=\frac{1}{2} \sum_{i}\left(z_{i}-t_{i}\right)^{2}
$$

If we think of E as height, it defines an error landscape on the weight space. The aim is to find a set of weights for which E is very low.

Neural Network Equations

We sometimes use w as a shorthand for any of the trainable weights $\left\{c, v_{1}, v_{2}, b_{1}, b_{2}, w_{11}, w_{21}, w_{12}, w_{22}\right\}$.

COMP9444
© Alan Blair, 2017-20

COMP9444 20T2
Backpropagation

Local Search in Weight Space

Problem: because of the step function, the landscape will not be smooth but will instead consist almost entirely of flat local regions and "shoulders", with occasional discontinuous jumps.

Continuous Activation Functions (3.10)

Key Idea: Replace the (discontinuous) step function with a differentiable function, such as the sigmoid:

$$
g(s)=\frac{1}{1+e^{-s}}
$$

or hyperbolic tangent

$$
g(s)=\tanh (s)=\frac{e^{s}-e^{-s}}{e^{s}+e^{-s}}=2\left(\frac{1}{1+e^{-2 s}}\right)-1
$$

Chain Rule (6.5.2)

If, say

$$
\begin{aligned}
& y=y(u) \\
& u=u(x)
\end{aligned}
$$

Then

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u} \frac{\partial u}{\partial x}
$$

This principle can be used to compute the partial derivatives in an efficient and localized manner. Note that the transfer function must be differentiable (usually sigmoid, or tanh).

$$
\left.\begin{array}{rlrl}
\text { Note: if } & z(s) & =\frac{1}{1+e^{-s}}, & z^{\prime}(s)
\end{array}\right)=z(1-z) .
$$

Gradient Descent (4.3)

Recall that the loss function E is (half) the sum over all input patterns of the square of the difference between actual output and target output

$$
E=\frac{1}{2} \sum_{i}\left(z_{i}-t_{i}\right)^{2}
$$

The aim is to find a set of weights for which E is very low.
If the functions involved are smooth, we can use multi-variable calculus to adjust the weights in such a way as to take us in the steepest downhill direction.

$$
w \leftarrow w-\eta \frac{\partial E}{\partial w}
$$

Parameter η is called the learning rate.

Forward Pass

Backpropagation

Partial Derivatives

$$
\begin{aligned}
\frac{\partial E}{\partial z} & =z-t \\
\frac{d z}{d s} & =g^{\prime}(s)=z(1-z) \\
\frac{\partial s}{\partial y_{1}} & =v_{1} \\
\frac{d y_{1}}{d u_{1}} & =y_{1}\left(1-y_{1}\right)
\end{aligned}
$$

Useful notation

$$
\delta_{\text {out }}=\frac{\partial E}{\partial s} \quad \delta_{1}=\frac{\partial E}{\partial u_{1}} \quad \delta_{2}=\frac{\partial E}{\partial u_{2}}
$$

Then
$\delta_{\text {out }}=(z-t) z(1-z)$
$\frac{\partial E}{\partial \nu_{1}}=\delta_{\text {out }} y_{1}$
$\delta_{1}=\delta_{\text {out }} v_{1} y_{1}\left(1-y_{1}\right)$
$\frac{\partial E}{\partial w_{11}}=\delta_{1} x_{1}$
Partial derivatives can be calculated efficiently by packpropagating deltas through the network.

Training Tips

re-scale inputs and outputs to be in the range 0 to 1 or -1 to 1

- otherwise, backprop may put undue emphasis on larger values
- replace missing values with mean value for that attribute
- initialize weights to small random values
on-line, batch, mini-batch, experience replay
\square adjust learning rate (and momentum) to suit the particular task

Based on these inputs, try to predict whether the patient will develop Diabetes (1) or Not (0).

